Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Oil, Gas, and Energy

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 81

Full-Text Articles in Mechanical Engineering

Simulation Of Wave Propagation In Granular Particles Using A Discrete Element Model, Syed Tahmid Hussan Jan 2024

Simulation Of Wave Propagation In Granular Particles Using A Discrete Element Model, Syed Tahmid Hussan

Electronic Theses and Dissertations

The understanding of Bender Element mechanism and utilization of Particle Flow Code (PFC) to simulate the seismic wave behavior is important to test the dynamic behavior of soil particles. Both discrete and finite element methods can be used to simulate wave behavior. However, Discrete Element Method (DEM) is mostly suitable, as the micro scaled soil particle cannot be fully considered as continuous specimen like a piece of rod or aluminum. Recently DEM has been widely used to study mechanical properties of soils at particle level considering the particles as balls. This study represents a comparative analysis of Voigt and Best …


A One-Dimensional Analysis Of A Microbial Fuel Cell For Efficient Acetate Removal And Power Density Output, David Rouhani May 2023

A One-Dimensional Analysis Of A Microbial Fuel Cell For Efficient Acetate Removal And Power Density Output, David Rouhani

UNLV Theses, Dissertations, Professional Papers, and Capstones

Microbial fuel cells (MFCs) are electrochemical devices that utilize microorganisms to convert organic matter into electrical energy. MFCs have been discussed to have potential application for sustainable wastewater treatment due to their ability to generate electricity while simultaneously treating contaminated water. To optimize MFC performance, numerical models can be used to understand the complex electrochemical and biological processes occurring in the system. In this study, a numerical model was developed to simulate the performance of MFCs under varying operating conditions and to investigate the performance of a MFC for treating wastewater fuel. More specifically, the MFC was modeled to oxidize …


Fabrication Of Solid Oxide Fuel Cell Components Using Stereolithography 3d Printing, Hannah Dyer May 2023

Fabrication Of Solid Oxide Fuel Cell Components Using Stereolithography 3d Printing, Hannah Dyer

Mechanical & Aerospace Engineering Theses & Dissertations

Transitioning from fossil fuel supplied energy to renewable technology must meet cost efficient parameters throughout the manufacturing process while possessing the characteristics of a functioning and reliable power source. With a significant demand in renewable energy products, developmental techniques require adaptive approaches and procedures for novel materials in the manufacturing phase. This report proposes how a solid oxide fuel cell (SOFC), a renewable energy system, can employ additive manufacturing for directly 3D printing its components by utilizing stereolithography (SLA) 3D printing techniques. Fabrication of the printed components from the mixtures were first mixed with varying concentrations of ceramic powder and …


Metastability And Degradation In Cu(In,Ga)Se2 Thin-Film Solar Cells, Mohsen Jahandardoost May 2023

Metastability And Degradation In Cu(In,Ga)Se2 Thin-Film Solar Cells, Mohsen Jahandardoost

UNLV Theses, Dissertations, Professional Papers, and Capstones

Cu(In,Ga)(S,Se)2 or CIGS is a thin-film semiconductor that has shown a device efficiency of 23.35% and 24.2% for single-junction and perovskite/CIGS tandem solar cells, respectively. CIGS offers promising properties such as tunable bandgap and ease of processing making them great candidates for thin-film tandem devices. However, knowledge of the effect of material defects, buffer materials, and post-deposition treatment (PDT) on degradation and metastability behavior in these devices is not well understood.In this dissertation, metastability and long-term degradation of CIGS thin-film solar cells have been investigated under combinatorial stress factors of heat, light, and voltage bias to systematically understand the effect …


The Qualification Of Sealability And Creep Relaxation Of Additively Manufactured Zytel Gaskets For Pem Fuel Cells, Robert Lazarin Dec 2022

The Qualification Of Sealability And Creep Relaxation Of Additively Manufactured Zytel Gaskets For Pem Fuel Cells, Robert Lazarin

Open Access Theses & Dissertations

The purpose of this thesis is to study the feasibility of low-cost additive manufacturing of gaskets for proton exchange membrane fuel cells exposed to extreme temperature conditions ranging from -55°C to 100°C. With the growing popularity and decreasing costs of additive manufacturing technologies, specifically Material Extrusion (ME), research is being conducted to determine the feasibility of ME components. Thermally cycled PEMFCs may exhibit accelerated gasket deterioration, therefore, the mechanical stability of material extruded gaskets following a harsh thermal cycle must be assessed. The feasibility of the material extruded gaskets will be proven by manufacturing optimization and mechanical testing. The target …


Fabrication And Characterization Of Iron-Based Catalysts For The Dehydrogenation Of Fossil Fuels, Victoria Isabel Reyes Dec 2022

Fabrication And Characterization Of Iron-Based Catalysts For The Dehydrogenation Of Fossil Fuels, Victoria Isabel Reyes

Open Access Theses & Dissertations

For a prosperous and sustainable future, hydrogen is an encouraging solution due to its simple transition for industrial decarbonization and synergy for economic development. Paradoxically, current hydrogen production pathways release substantial amount of greenhouse gases into the atmosphere contributing to climate change. To keep up with increasing demand, hydrogen could be produced through microwave-assisted thermocatalytic dehydrogenation of fossil fuels without emitting carbon dioxide. This requires specified catalysts to meet the requirements of hydrogen yield and selectivity. The objective of the present research is to fabricate, characterize, and compare iron-based alumina (FeAl_x O_y) catalysts produced via solution combustion synthesis and iron-based …


Characterization Of A Flex-Fuel Oxy-Combustion System Through Experimental Investigation And Computational Modeling, Md Mohieminul I. Khan Aug 2022

Characterization Of A Flex-Fuel Oxy-Combustion System Through Experimental Investigation And Computational Modeling, Md Mohieminul I. Khan

Open Access Theses & Dissertations

Oxy-fuel combustion has the potential to offer high thermal efficiency and lower pollutants emission compared to other existing combustion technologies. More than 63% of the worldâ??s electricity is produced by fossil fuel combustion which also is the major reason for greenhouse gas emissions. Oxy combustion offers a solution to it. Oxy combustion uses pure oxygen as an oxidizer instead of air which eliminates the NOx and SOx products from the exhaust. In oxy-combustion flue gas mainly consists of CO2 and water vapor. Furthermore, combustion in presence of pure oxygen results in higher flame temperature and hence promises higher thermal efficiency. …


Suitability Of Low-Cost Additive Manufacturing For Polymer Electrolyte Fuel Cells, David Alexander May 2022

Suitability Of Low-Cost Additive Manufacturing For Polymer Electrolyte Fuel Cells, David Alexander

Open Access Theses & Dissertations

The purpose of this dissertation is to study the feasibility of low-cost additive manufacturing to fabricate polymer electrolyte fuel cell bipolar plate materials. Traditional manufacturing techniques include molding, milling, hollow embossing, hydro-forming, rolling, and electromagnetic forming. These processes are employed when a design has been selected due to higher costs at low volumes. The combination of high initial costs and bipolar plates being the most expensive component of the polymer electrolyte fuel cell creates incentive to mitigate this obstacle. The feasibility of low-cost additive manufactured bipolar plates will be proven by fabrication, post-processing, and characterization of printed test specimen. The …


Supercritical Co2 Recompression Closed Brayton Cycle Analysis, Andres Eduardo Gutierrez Hernandez Dec 2021

Supercritical Co2 Recompression Closed Brayton Cycle Analysis, Andres Eduardo Gutierrez Hernandez

Open Access Theses & Dissertations

On this research, the results of an analysis made of a Supercritical Carbon Dioxide (sCO2) Recuperated Closed Brayton Cycle (RCBC) done by performing theorical calculations and comparing it to the results obtained with the use of the software ASPEN Plus will be presented. To demonstrate and determine that this software is a useful tool for modeling the proposed type of cycle, a preliminary comparison was made to verify with previous studies found in literature. A comparison and analysis between the possible working fluids and thermal energy sources was also performed to emphasize the decision of using CO2 as the cycle …


Economic Feasibility Of Mixed Plastic Waste Pyrolysis Using Twin Reactor System In Northwest Arkansas, Carol Rogers, Patricia Means, Renato Gonzalez, Kaida Sheets, Hayden Townsend May 2021

Economic Feasibility Of Mixed Plastic Waste Pyrolysis Using Twin Reactor System In Northwest Arkansas, Carol Rogers, Patricia Means, Renato Gonzalez, Kaida Sheets, Hayden Townsend

Chemical Engineering Undergraduate Honors Theses

Plastic waste generation is increasing at an unsustainable rate while recycling solutions remain stagnant. As a chemical means of recycling, mixed plastic waste pyrolysis can generate synthetic oil appropriate for use as fuel in power generation from plastic waste that otherwise accumulates in landfills. With the scaling of a commercial plastic pyrolysis process in Northwest Arkansas (NWA) modeled after an operational sawdust pyrolysis unit in Huntsville, Arkansas, economic analysis resulted in 26.3% internal rate of return. Therefore, construction of a commercial mixed plastic-to-fuel pyrolysis plant is economically justified and should be pursued. To effectively implement the proposed design, NWA must …


Sensible/Latent Hybrid Thermal Energy Storage For The Supercritical Carbon Dioxide Brayton Cycle, Kelly Osterman Apr 2021

Sensible/Latent Hybrid Thermal Energy Storage For The Supercritical Carbon Dioxide Brayton Cycle, Kelly Osterman

USF Tampa Graduate Theses and Dissertations

Mitigating the effects of climate change will require rapid deployment of a carbon-free electricity system that includes all available forms of zero-carbon energy. Both renewables and nuclear show great promise, but both come with drawbacks. Power production from wind and solar is limited to times when their respective resources are available, while nuclear is limited in its ability to adjust its output according to the ever-varying demand for electricity. Additionally, the systems must be affordable. One way to reduce the cost of thermal power plants (concentrated solar power and nuclear) is to use new power cycles, such as the supercritical …


Efficiency Analysis Of Harvesting Solar Energy To Perform Mechanical Work, Haden S. Bragg May 2020

Efficiency Analysis Of Harvesting Solar Energy To Perform Mechanical Work, Haden S. Bragg

Undergraduate Theses and Capstone Projects

The majority of the world’s electricity is generated using fossil fuels; in fact, the United States Energy Information Administration (EIA) states that the U.S. used fossil fuels to generate 62.7 % of its electricity in 2019 [1]. The goal of this research was to create a system that could perform mechanical work using only renewable resources. We built a solar charging station that uses two solar panels to generate electricity and an electric bicycle whose battery can be charged using the charging station. The efficiency for the type of solar cell used in this project is well established. Therefore, in …


Numerical And Experimental Investigation Of Performance For Very-Low-Head Micro And Pico Kaplan Hydro-Turbines With Rim-Driven Generators, Ahmad Ibrahim Mohammad Abbas May 2020

Numerical And Experimental Investigation Of Performance For Very-Low-Head Micro And Pico Kaplan Hydro-Turbines With Rim-Driven Generators, Ahmad Ibrahim Mohammad Abbas

Theses and Dissertations

Renewable energy plays a significant role in new power generation worldwide, and hydropower is contributing to 86% of renewable electricity production within all other renewable energy resources. Simultaneously, hydropower shares 83% of U.S. renewable energy capacity and accounts for 77% of actual renewable electricity generation. However, most of the installed hydropower consists of large plants. Much potential hydro generation remains untapped, particularly at lower power and head levels. There is a substantial opportunity worldwide and across the U.S. in specific to add new hydropower generating capabilities at low-head sites such as non-powered dams, canals, and conduits with a water height …


Dual-Axis Solar Tracker, Bryan Kennedy Jan 2020

Dual-Axis Solar Tracker, Bryan Kennedy

All Undergraduate Projects

Renewable energies, and fuels that are not fossil fuel-based, are one of the prolific topics of debate in modern society. With climate change now becoming a primary focus for scientists and innovators of today, one of the areas for the largest amount of potential and growth is that of the capturing and utilization of Solar Energy. This method involves using a mechanical system to track the progression of the sun as it traverses the sky throughout the day. A dual-axis solar tracker such as the one designed and built for this project, can follow the sun both azimuthally and in …


Characterization, Modeling, And Thermal Management Of High-Performance Lithium Batteries, Minjun Bae Jan 2020

Characterization, Modeling, And Thermal Management Of High-Performance Lithium Batteries, Minjun Bae

Wayne State University Theses

Lithium-ion (Li-ion) batteries, as one of the most advanced commercial rechargeable batteries, play a crucial role in modern society as they are extensively used in portable electronic devices. Nevertheless, the limited electrochemical performance and poor thermal management systems of Li-ion batteries have hindered the expansion of their future applications. In search of alternative electrode materials to develop a battery with higher electrochemical performance, lithium (Li) metal has attracted much attention as an ideal alternative anode material due to its high specific capacity and lowest redox potential. However, needle-like Li dendritic growth causes severe safety concerns and thus prohibits practical applications …


The Effect Of K2co3 Concentration In Kerosene Emulsions On Spray Droplet Sizes For A Magnetohydrodynamic Power Generator, Alejandra Castellano Jan 2020

The Effect Of K2co3 Concentration In Kerosene Emulsions On Spray Droplet Sizes For A Magnetohydrodynamic Power Generator, Alejandra Castellano

Open Access Theses & Dissertations

Potassium carbonate (K2CO3) is an effective seeding material to introduce potassium vapor in oxy-fuel combustion to create a conductive plasma. Injecting potassium carbonate before combustion promotes particle volatilization and improves the generation of potassium vapor. This can be achieved by emulsifying a potassium carbonate solution with kerosene. Several studies have investigated creating stable emulsions with kerosene with water by using differing surfactants. However, the effects of using varying concentrations of K2CO3 dissolved in deionized water have not been fully explored. Based on methods of creating successful emulsions, the development of a successful mixture comprised of kerosene and K2CO3 solution is …


Modeling Of Buildings With Electrochromic Windows And Thermochromic Roofs, Hua-Ting Kao Oct 2019

Modeling Of Buildings With Electrochromic Windows And Thermochromic Roofs, Hua-Ting Kao

USF Tampa Graduate Theses and Dissertations

Air conditioning and heating have increased substantially during the past two decades. According to a survey, buildings consume about 73% of the total electricity in the United States, accounting for 41% of all other energy in the world. At the same time, building skin technologies are constantly improving. Electrochromic and thermochromic are two exciting new technologies that can help reduce the energy consumption of a building. The purpose of this work is to increase our understanding of how much the use of electrochromic (EC) and thermochromic (TC) technologies can reduce the energy consumption of residential and commercial buildings in two …


Design Of Variable Wall Thickness Geometry And Performance Mapping Of Scroll Expanders For Distributed Power Generation, Arun Kumar Narasimhan Jul 2019

Design Of Variable Wall Thickness Geometry And Performance Mapping Of Scroll Expanders For Distributed Power Generation, Arun Kumar Narasimhan

USF Tampa Graduate Theses and Dissertations

Low-temperature heat sources such as industrial waste heat, solar, and geothermal are more suitable for small-scale power generation rather than utility scale. In order to maximize the electricity generated from low-temperature heat sources, an efficient expansion device for small-scale power output is necessary. This research work has focused on evaluating the use of a scroll expander and improving its geometrical design for the power output range of 1-25 kWe.

The first part of the work focusses on modeling the performance of a scroll expander using two non-dimensionless parameters, namely, specific speed and specific diameter. Performance of a scroll …


Design And Preliminary Evaluation Of A Supercritical Carbon Dioxide Brayton Cycle For Solar Dish Concentrator Clean Energy Production, Danielle Nobles-Lookingbill Dec 2018

Design And Preliminary Evaluation Of A Supercritical Carbon Dioxide Brayton Cycle For Solar Dish Concentrator Clean Energy Production, Danielle Nobles-Lookingbill

UNLV Theses, Dissertations, Professional Papers, and Capstones

As we move toward energy independence and more ambitious clean energy goals, solar energy research must push the efficiency limits of traditional energy generation systems. Increases in efficiency can be achieved by increasing the hot temperature of the power cycle. Recent research demonstrates the potential for increased efficiency and a vastly smaller component size when supercritical carbon dioxide Brayton power cycles are used. Concentrated solar and nuclear heat sources are capable of achieving the high working fluid temperatures needed for significant efficiency gains. This NSF EPSCoR funded, experimental research system is designed to exploit the uniquely immense solar irradiance of …


Non-Covalent Functionalization Of Graphene Films For Uniform Nanoparticle Deposition Via Atoic Layer Deposition, Ty Seiwert May 2018

Non-Covalent Functionalization Of Graphene Films For Uniform Nanoparticle Deposition Via Atoic Layer Deposition, Ty Seiwert

Mechanical Engineering Undergraduate Honors Theses

Graphene functionalized with platinum (Pt) and palladium (Pd) has proven to be highly effective as a hydrogen sensor. Deposition methods such as Atomic layer deposition (ALD) can be further enhanced by pretreating the graphene with a non-covalent surfactant prior to nanoparticle deposition. In this study, graphene-based sensing devices will be fabricated by ALD deposition. The graphene will be non-covalently functionalized using sodium dodecyl sulfate (SDS) anionic surfactant prior to ALD deposition. The aim of this study is to test the deposition pattern achieved by varying the amount of time that graphene is treated with the SDS surfactant. Initially, ALD deposition …


Automated Cfd Optimization To Maximize Wind Farms Performance And Land Use, Rafael Valotta Rodrigues Jan 2018

Automated Cfd Optimization To Maximize Wind Farms Performance And Land Use, Rafael Valotta Rodrigues

Electronic Theses and Dissertations

In this research, a computational system was designed to analyze and optimize the layout of wind farms under variable operational conditions. At first, a wind turbine computational fluid dynamic (CFD) model was developed covering the near wake. The near wake flow field was validated against near wake velocity data from the MEXICO experiment. The CFD simulation demonstrated that the tip speed ratio and the pitch angle greatly influence the near wake behavior, affecting the velocity deficit and the turbulence intensity profile in this region. The CFD model was extended to cover the far wake, aiming to become a computational tool …


Offshore Wind Energy: Simulating Local Offshore Wind Turbine, Ian P. Aquino Jan 2018

Offshore Wind Energy: Simulating Local Offshore Wind Turbine, Ian P. Aquino

Mechanical & Aerospace Engineering Theses & Dissertations

Dominion Virginia Energy is looking at the possible creation of an offshore wind plant as a renewable source of electricity to be located off the coast of Virginia Beach. This thesis reports on a computer simulation based on local wind conditions and possible single wind turbine installation.

The National Buoy Data Center keeps records of the local wind conditions gathered in real time and available to the public. These data give a general overview of the wind conditions in Virginia Beach which is used to simulate atmospheric boundary layer (ABL) flow conditions and is subsequently used as input data for …


Multiscale Approaches Toward Advanced Lithium-Ion Battery: From Nano To Meso Scale, Susmita Sarkar Jan 2018

Multiscale Approaches Toward Advanced Lithium-Ion Battery: From Nano To Meso Scale, Susmita Sarkar

Masters Theses

“Battery performance and its degradation are determined by various aspects such as the transport of ions and electrons through heterogeneous internal structures composed of constituent particles, kinetic reactions at the interfaces, and a corresponding interplay between mechanical, chemical, and thermal responses. Further, modern battery materials require a variety of engineering processes such as coating, doping and mixing. As a result, in order to fully understand the behavior of the battery material and improve battery performance, it is necessary to understand and control the individual particle behavior and then connect it to the electrode. This study elucidated the physical phenomena associated …


Experimental Study Of High-Temperature Range Latent Heat Thermal Energy Storage, Chatura Wickramaratne Nov 2017

Experimental Study Of High-Temperature Range Latent Heat Thermal Energy Storage, Chatura Wickramaratne

USF Tampa Graduate Theses and Dissertations

Among all thermal energy storage (TES) systems, latent heat thermal energy storage (LHTES) attracts high interest due to its high energy density and high exergetic efficiency. Due to the high enthalpy of fusion and low cost, inorganic salts are becoming popular as phase change materials and are used as the storage media in LHTES systems. The main drawbacks for the inorganic salts are their low thermal conductivity and high reactivity above 500°C. Therefore, designing a cost-effective containment at these conditions with longevity is a challenge. Macro-encapsulation of the PCM is one way to solve both the PCM containment issue as …


An Economic Analysis Of Residential Photovoltaic Systems With And Without Energy Storage, Rodney Moses Kizito Aug 2017

An Economic Analysis Of Residential Photovoltaic Systems With And Without Energy Storage, Rodney Moses Kizito

Graduate Theses and Dissertations

Residential photovoltaic (PV) systems serve as a source of electricity generation that is separate from the traditional utilities. Investor investment into residential PV systems provides several financial benefits such as federal tax credit incentives for installation, net metering credit from excess generated electricity added back to the grid, and savings in price per kilowatt-hour (kWh) from the PV system generation versus the increasing conventional utility price per kWh. As much benefit as stand-alone PV systems present, the incorporation of energy storage yields even greater benefits. Energy storage (ES) is capable of storing unused PV provided energy from daytime periods of …


Numerical Study Of Thermal Performance Improvement By Novel Structures In The Building Energy Storage Systems, Junling Xie Aug 2017

Numerical Study Of Thermal Performance Improvement By Novel Structures In The Building Energy Storage Systems, Junling Xie

Theses and Dissertations

In this work, numerical studies were conducted to investigate the effectiveness of two fin-like novel structures used for heat-transfer enhancement in two building energy storage systems including thermal energy storage and battery energy storage.

Firstly, thin layer ring structure was numerically investigated for thermal performance improvement in the thermal energy storage. From the results obtained in this study, the area ratio can be increased by 4% when using the thin layer ring during the same time period. The thin layer ring structure can shorten ice formation period and increase its efficiency. Further study was conducted for the factorial analysis of …


Pore Resolved Simulations Of Char Particle Gasification, Greg Hingwah Fong Jul 2017

Pore Resolved Simulations Of Char Particle Gasification, Greg Hingwah Fong

Master's Theses (2009 -)

Coal is a significant source of energy in today’s world and many studies have been conducted in order to better understand and optimize its use. To address greenhouse effects associated with coal combustion, cleaner methods for harnessing its energy are being explored. One such method is gasification, a process which converts coal into syngas, a mixture consisting primarily of H2 and CO. Syngas can be used to generate electricity or to produce hydrocarbons that can be used as fuels. To better understand and optimize the process, simulations can be used to study the gasification of individual porous char particles that …


Study Of Periodical Flow Heat Transfer In An Internal Combustion Engine, Xi Luo Jan 2017

Study Of Periodical Flow Heat Transfer In An Internal Combustion Engine, Xi Luo

Wayne State University Dissertations

In-cylinder heat transfer is one of the most critical physical behaviors which has a direct influence on engine out emission and thermal efficiency for IC engine. In-cylinder wall temperature has to be precisely controlled to achieve high efficiency and low emission. However, this cannot be done without knowing gas-to-wall heat flux. This study reports on the development of a technique suitable for engine in-cylinder surface temperature measurement, as the traditional method is “hard to reach.” A laser induced phosphorescence technique was used to study in-cylinder wall temperature effects on engine out unburned hydrocarbons during the engine transitional period (warm up). …


Development Of A Dynamic Cfd Model For Offshore Oscillating Water Columns With Non-Linear Interactions, Ken O'Connell Jan 2017

Development Of A Dynamic Cfd Model For Offshore Oscillating Water Columns With Non-Linear Interactions, Ken O'Connell

Theses

This thesis focuses on the development of a state of the art modelling technique for offshore Oscillating Water Column (OWC) type Wave Energy Converters (WEC) using Computational Fluid Dynamics (CFD). Current literature indicates a limited amount of work has been completed on studying these devices containing non-linear time dependent flow phenomenon. Initially, a 2D Numerical Wave Tank (NWT) is studied to reduce discretisation error in order to reproduce accurately propagating waves. Further development into a 3D domain permits the geometrical requirements of an OWC type spar buoy to be included.

In parallel, a single Degree of Freedom (DOF) model is …


Stationary Nonimaging Concentrators – A Comprehensive Study And Design Improvements, Srikanth Madala Dec 2016

Stationary Nonimaging Concentrators – A Comprehensive Study And Design Improvements, Srikanth Madala

UNLV Theses, Dissertations, Professional Papers, and Capstones

Most places on our planet receive an annual average radiation between 800-1000 W/m2. In the man-made world, this radiation is largely incident on stationary structures such as buildings, roads, monuments, bridges etc. Moreover, in the natural world also, there are large tracts of barren land which can be put to good use given their solar energy potential. The vision of the current research is to concentrate all this available solar energy to a more readily usable form. Therefore, stationary nonimaging solar concentrator technologies are sought after. This dissertation work is an exhaustive research on the nonimaging concentrating mechanisms with stationary …