Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Extrusion-Based Additive Manufacturing Of Magnetic Heat Exchange Structures For Caloric Applications, Vaibhav Sharma Jan 2024

Extrusion-Based Additive Manufacturing Of Magnetic Heat Exchange Structures For Caloric Applications, Vaibhav Sharma

Theses and Dissertations

Currently, the commercial building sector accounts for 18% of total U.S. end-use energy consumption, of which almost a third was from on-site combustion of fossil fuels for space and water heating. Magnetic heat pumping (MHP) technology is an energy-efficient, sustainable, environmentally-friendly alternative to conventional vapor-compression cooling technology. Several MHP designs today are predicted to be highly energy efficient, on condition that suitable working materials can be developed. This materials challenge has proven to be daunting due to issues associated with intricate synthesis/post-processing protocols and complications related to shaping the mostly brittle magnetocaloric alloys into thin-walled channeled regenerator structures to facilitate …


Modeling Electrospun Fibrous Materials, Sina Hassanpouryousefi Jan 2019

Modeling Electrospun Fibrous Materials, Sina Hassanpouryousefi

Theses and Dissertations

Electrospinning has been the focus of countless studies for the past decades for applications, including but not limited to, filtration, tissue engineering, and catalysis. Electrospinning is a one-step process for producing nano- and/or micro-fibrous materials with diameters ranging typically from 50 to 5000 nm. The simulation algorithm presented here is based on a novel mass-spring-damper (MSD) approach devised to incorporate the mechanical properties of the fibers in predicting the formation and morphology of the electrospun fibers as they travel from the needle toward the collector, and as they deposit on the substrate. This work is the first to develop a …


Capillary Forces In Partially Saturated Thin Fibrous Media, Ali Moghadam Jan 2019

Capillary Forces In Partially Saturated Thin Fibrous Media, Ali Moghadam

Theses and Dissertations

Capillarity is often exploited in self-cleaning, drag reducing and fluid absorption/storage (sanitary products) purposes just to name a few. Formulating the underlying physics of capillarity helps future design and development of optimized structures. This work reports on developing computational models to quantify the capillary pressure and capillary forces on the fibrous surfaces. To this end, the current study utilizes a novel mass-spring-damper approach to incorporate the mechanical properties of the fibers in generating virtual fibrous structures that can best represent fibrous membranes. Such virtual fibrous structures are then subjected to a pressure estimation model, developed for the first time in …