Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Mechanical Engineering

Recent Advances In Centrifugal Spinning And Their Applications In Tissue Engineering, Shaik Merkatur Hakim Marjuban, Musfira Rahman, Syeda Sharmin Duza, Mohammad Boshir Ahmed, Dinesh K. Patel, Md Saifur Rahman, Karen Lozano Mar 2023

Recent Advances In Centrifugal Spinning And Their Applications In Tissue Engineering, Shaik Merkatur Hakim Marjuban, Musfira Rahman, Syeda Sharmin Duza, Mohammad Boshir Ahmed, Dinesh K. Patel, Md Saifur Rahman, Karen Lozano

Mechanical Engineering Faculty Publications and Presentations

Over the last decade, researchers have investigated the potential of nano and microfiber scaffolds to promote wound healing, tissue regeneration, and skin protection. The centrifugal spinning technique is favored over others due to its relatively straightforward mechanism for producing large quantities of fiber. Many polymeric materials have yet to be investigated in search of those with multifunctional properties that would make them attractive in tissue applications. This literature presents the fundamental process of fiber generation, and the effects of fabrication parameters (machine, solution) on the morphologies such as fiber diameter, distribution, alignment, porous features, and mechanical properties. Additionally, a brief …


Development Of Zinc Oxide/Hydroxyapatite/Poly(D,L-Lactic Acid) Fibrous Scaffold For Tissue Engineering Applications, Victoria Padilla-Gainza, Heriberto Rodríguez-Tobías, Graciela Morales, Antonio Ledezma-Pérez, Carmen Alvarado-Canché, Raúl Loera-Valencia, Cristóbal Rodríguez, Robert Gilkerson, Carlos Trevino De Leo, Karen Lozano Feb 2022

Development Of Zinc Oxide/Hydroxyapatite/Poly(D,L-Lactic Acid) Fibrous Scaffold For Tissue Engineering Applications, Victoria Padilla-Gainza, Heriberto Rodríguez-Tobías, Graciela Morales, Antonio Ledezma-Pérez, Carmen Alvarado-Canché, Raúl Loera-Valencia, Cristóbal Rodríguez, Robert Gilkerson, Carlos Trevino De Leo, Karen Lozano

Mechanical Engineering Faculty Publications and Presentations

Scaffolds based on polymeric fibers represent an engaging biomedical device due to their particular morphology and similarity with extracellular matrices. The biggest challenge to use fibrous materials in the biomedical field is related to their favorable platform for the adhesion of pathogenic microorganisms. Therefore, their optimum performance not only depends on their bioactive potential but also on their antimicrobial properties. The aim of this work was the design of antimicrobial (zinc oxide, ZnO) and bioactive (hydroxyapatite, Hap) fibrous materials using poly(D, L-lactic acid) (PDLLA) as the polymer fiber substrate. Fiber based composite scaffolds were developed using the Forcespinning® technique. For …


Anisotropic Scaffolds For Peripheral Nerve And Spinal Cord Regeneration, Wen Xue, Wen Shi, Yunfan Kong, Mitchell Kuss, Bin Duan Apr 2021

Anisotropic Scaffolds For Peripheral Nerve And Spinal Cord Regeneration, Wen Xue, Wen Shi, Yunfan Kong, Mitchell Kuss, Bin Duan

Department of Mechanical and Materials Engineering: Faculty Publications

The treatment of long-gap (>10 mm) peripheral nerve injury (PNI) and spinal cord injury (SCI) remains a continuous challenge due to limited native tissue regeneration capabilities. The current clinical strategy of using autografts for PNI suffers from a source shortage, while the pharmacological treatment for SCI presents dissatisfactory results. Tissue engineering, as an alternative, is a promising approach for regenerating peripheral nerves and spinal cords. Through providing a beneficial environment, a scaffold is the primary element in tissue engineering. In particular, scaffolds with anisotropic structures resembling the native extracellular matrix (ECM) can effectively guide neural outgrowth and reconnection. In …


3d Printing Of Multilayered Scaffolds For Rotator Cuff Tendon Regeneration, Xiping Jiang, Shaohua Wu, Mitchell Kuss, Yunfan Kong, Wen Shi, Philipp N. Streubel, Tieshi Li, Bin Duan Jan 2020

3d Printing Of Multilayered Scaffolds For Rotator Cuff Tendon Regeneration, Xiping Jiang, Shaohua Wu, Mitchell Kuss, Yunfan Kong, Wen Shi, Philipp N. Streubel, Tieshi Li, Bin Duan

Department of Mechanical and Materials Engineering: Faculty Publications

Repairing massive rotator cuff tendon defects remains a challenge due to the high retear rate after surgical intervention. 3D printing has emerged as a promising technique that enables the fabrication of engineered tissues with heterogeneous structures and mechanical properties, as well as controllable microenvironments for tendon regeneration. In this study, we developed a new strategy for rotator cuff tendon repair by combining a 3D printed scaffold of polylactic-co-glycolic acid (PLGA) with cell-laden collagen-fibrin hydrogels. We designed and fabricated two types of scaffolds: one featuring a separate layer-by-layer structure and another with a tri-layered structure as a whole. Uniaxial tensile tests …


3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan Sep 2019

3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan

Department of Mechanical and Materials Engineering: Faculty Publications

3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment of PRP …


Visible Light Crosslinkable Human Hair Keratin Hydrogels, Kan Yue, Yanhui Liu, Batzaya Byambaa, Vaishali Singh, Wanjun Liu, Xiuyu Li, Yunxia Sun, Yu Shrike Zhang, Ali Tamayol, Peihua Zhang, Kee Woei Ng, Nasim Annabi, Ali Khademhosseini Jan 2018

Visible Light Crosslinkable Human Hair Keratin Hydrogels, Kan Yue, Yanhui Liu, Batzaya Byambaa, Vaishali Singh, Wanjun Liu, Xiuyu Li, Yunxia Sun, Yu Shrike Zhang, Ali Tamayol, Peihua Zhang, Kee Woei Ng, Nasim Annabi, Ali Khademhosseini

Department of Mechanical and Materials Engineering: Faculty Publications

Keratins extracted from human hair have emerged as a promising biomaterial for various biomedical applications, partly due to their wide availability, low cost, minimal immune response, and the potential to engineer autologous tissue constructs. However, the fabrication of keratin-based scaffolds typically relies on limited crosslinking mechanisms, such as via physical interactions or disulfide bond formation, which are time-consuming and result in relatively poor mechanical strength and stability. Here, we report the preparation of photocrosslinkable keratin-polyethylene glycol (PEG) hydrogels via the thiol-norbornene “click” reaction, which can be formed within one minute upon irradiation of visible light. The resulting keratin-PEG hydrogels showed …


Radial And Longitudinal Motion Of The Arterial Wall: Their Relation To Pulsatile Pressure And Flow In The Artery, Dan Wang, Linda Vahala, Zhili Hao Jan 2018

Radial And Longitudinal Motion Of The Arterial Wall: Their Relation To Pulsatile Pressure And Flow In The Artery, Dan Wang, Linda Vahala, Zhili Hao

Mechanical & Aerospace Engineering Faculty Publications

The aim of this paper is to analyze the radial and longitudinal motion of the arterial wall in the context of pulsatile pressure and flow, and to understand their physiological implications for the cardiovascular system. A reexamination of the well-established one-dimensional governing equations for axial blood flow in the artery and the constitutive equation for the radial dilation of the arterial wall shows that two waves—a pulsatile pressure wave in the artery and a radial displacement wave in the arterial wall—propagate simultaneously along the arterial tree with the same propagation velocity, explaining why this velocity combines the physical properties and …


3d Bioprinting Of Stem Cells And Polymer/Bioactive Glass Composite Scaffolds For Bone Tissue Engineering, Caroline Murphy, Krishna Kolan, Wenbin Li, Julie A. Semon, D. E. Day, Ming-Chuan Leu Jan 2017

3d Bioprinting Of Stem Cells And Polymer/Bioactive Glass Composite Scaffolds For Bone Tissue Engineering, Caroline Murphy, Krishna Kolan, Wenbin Li, Julie A. Semon, D. E. Day, Ming-Chuan Leu

Biological Sciences Faculty Research & Creative Works

A major limitation of using synthetic scaffolds in tissue engineering applications is insufficient angiogenesis in scaffold interior. Bioactive borate glasses have been shown to promote angiogenesis. There is a need to investigate the biofabrication of polymer composites by incorporating borate glass to increase the angiogenic capacity of the fabri-cated scaffolds. In this study, we investigated the bioprinting of human adipose stem cells (ASCs) with a polycaprolac-tone (PCL)/bioactive borate glass composite. Borate glass at the concentration of 10 to 50 weight %, was added to a mixture of PCL and organic solvent to make an extrudable paste. ASCs suspended in Matrigel …


Bioink Properties Before, During And After 3d Bioprinting, Katja Hölzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov Sep 2016

Bioink Properties Before, During And After 3d Bioprinting, Katja Hölzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov

Department of Mechanical and Materials Engineering: Faculty Publications

Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration …


Bioink Properties Before, During And After 3d Bioprinting, Katja Holzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov Jan 2016

Bioink Properties Before, During And After 3d Bioprinting, Katja Holzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov

Department of Mechanical and Materials Engineering: Faculty Publications

Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration …


Fluid Flow-Induced Mesenchymal Stem Cell Migration: Role Of Fak And Rock Mechanosensors, Brandon D. Riehl May 2014

Fluid Flow-Induced Mesenchymal Stem Cell Migration: Role Of Fak And Rock Mechanosensors, Brandon D. Riehl

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The study of mesenchymal stem cell (MSC) migration under mechanical stimulation conditions with investigation of the underlying molecular mechanism could lead to a better understanding and outcomes in stem cell-based regenerative medicine. MSCs having multipotent regenerative capability exist in niches in the bone marrow, muscle, vasculature, and in other tissues throughout the body, and their migration through tissues and vasculature for the repair of damaged tissue is a key process of cell and tissue homeostasis, remodeling, and regeneration. While cell migration in response to cytokines and other chemo-attractants is relatively well understood, little is revealed in regard to the effect …


Biological Evaluation Of A Novel Tissue Engineering Scaffold Of Layered Double Hydroxides (Ldhs), Fateme Fayyazbakhsh, Mehran Solati-Hashjin, M. A. Shokrgozar, S. Bonakdar, Y. Ganji, N. Mirjordavi, S. A. Ghavimi, P. Khashayar Jan 2012

Biological Evaluation Of A Novel Tissue Engineering Scaffold Of Layered Double Hydroxides (Ldhs), Fateme Fayyazbakhsh, Mehran Solati-Hashjin, M. A. Shokrgozar, S. Bonakdar, Y. Ganji, N. Mirjordavi, S. A. Ghavimi, P. Khashayar

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Bone Tissue Engineering (BTE) Composed of Three Main Parts: Scaffold, Cells and Signaling Factors. Several Materials and Composites Are Suggested as a Scaffold for BTE. Biocompatibility is One of the Most Important Property of a BTE Scaffold. in This Work Synthesis of a Novel Nanocomposite Including Layered Double Hydroxides (LDH) and Gelatin is Carried Out and its Biological Properties Were Studied. the Co-Precipitation (PH=11) Method Was Used to Prepare the LDH Powder, using Calcium Nitrate, Magesium Nitrate and Aluminum Nitrate Salts as Starting Materials. the Resulted Precipitates Were Dried. X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron …