Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Finite element analysis

Mechanical Engineering Faculty Publications and Presentations

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Impact Of Hysteresis Heating Of Railroad Bearing Thermoplastic Elastomer Suspension Pad On Railroad Bearing Thermal Management, Oscar O. Rodriguez, Arturo A. Fuentes, Constantine Tarawneh Jun 2018

Impact Of Hysteresis Heating Of Railroad Bearing Thermoplastic Elastomer Suspension Pad On Railroad Bearing Thermal Management, Oscar O. Rodriguez, Arturo A. Fuentes, Constantine Tarawneh

Mechanical Engineering Faculty Publications and Presentations

It is a known fact that polymers and all other materials develop hysteresis heating due to the viscoelastic response or internal friction. The hysteresis or phase lag occurs when cyclic loading is applied leading to the dissipation of mechanical energy. The hysteresis heating is induced by the internal heat generation of the material, which occurs at the molecular level as it is being disturbed cyclically. Understanding the hysteresis heating of the railroad bearing elastomer suspension element during operation is essential to predict its dynamic response and structural integrity, as well as to predict the thermal behavior of the railroad bearing …


Hysteresis Heating Of Railroad Bearing Thermoplastic Elastomer Suspension Element, Oscar O. Rodriguez, Arturo A. Fuentes, Constantine Tarawneh, Robert E. Jones Jun 2017

Hysteresis Heating Of Railroad Bearing Thermoplastic Elastomer Suspension Element, Oscar O. Rodriguez, Arturo A. Fuentes, Constantine Tarawneh, Robert E. Jones

Mechanical Engineering Faculty Publications and Presentations

Thermoplastic elastomers (TPE’s) are increasingly being used in rail service in load damping applications. They are superior to traditional elastomers primarily in their ease of fabrication. Like traditional elastomers they offer benefits including reduction in noise emissions and improved wear resistance in metal components that are in contact with such parts in the railcar suspension system. However, viscoelastic materials, such as the railroad bearing thermoplastic elastomer suspension element (or elastomeric pad), are known to develop self-heating (hysteresis) under cyclic loading, which can lead to undesirable consequences. Quantifying the hysteresis heating of the pad during operation is therefore essential to predict …


Fatigue Life Estimation Of Modified Railroad Bearing Adapters For Onboard Monitoring Applications, Alexis Trevino, Arturo A. Fuentes, Constantine Tarawneh, Joseph Montalvo Jun 2015

Fatigue Life Estimation Of Modified Railroad Bearing Adapters For Onboard Monitoring Applications, Alexis Trevino, Arturo A. Fuentes, Constantine Tarawneh, Joseph Montalvo

Mechanical Engineering Faculty Publications and Presentations

This paper presents a study of the fatigue life (i.e. number of stress cycles before failure) of Class K cast iron conventional and modified railroad bearing adapters for onboard monitoring applications under different operational conditions based on experimentally validated Finite Element Analysis (FEA) stress results. Currently, freight railcars rely heavily on wayside hot-box detectors (HBDs) at strategic intervals to record bearing cup temperatures as the train passes at specified velocities. Hence, most temperature measurements are limited to certain physical railroad locations. This limitation gave way for an optimized sensor that could potentially deliver significant insight on continuous bearing temperature conditions. …


Structural Integrity Of Conventional And Modified Railroad Bearing Adapters For Onboard Monitoring, Joseph Montalvo, Alexis Trevino, Arturo A. Fuentes, Constantine Tarawneh Mar 2015

Structural Integrity Of Conventional And Modified Railroad Bearing Adapters For Onboard Monitoring, Joseph Montalvo, Alexis Trevino, Arturo A. Fuentes, Constantine Tarawneh

Mechanical Engineering Faculty Publications and Presentations

This paper presents a detailed study of the structural integrity of conventional and modified railroad bearing adapters for onboard monitoring applications. Freight railcars rely heavily on weigh bridges and stations to determine cargo load. As a consequence, most load measurements are limited to certain physical railroad locations. This limitation provided an opportunity for an optimized sensor that could potentially deliver significant insight on bearing condition monitoring as well as load information. Bearing adapter modifications (e.g. cut outs) were necessary to house the sensor and, thus, it is imperative to determine the reliability of the modified railroad bearing adapter, which will …