Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Application Of Finite Element Method In Protein Normal Mode Analysis, Chiung-Fang Hsu Jan 2013

Application Of Finite Element Method In Protein Normal Mode Analysis, Chiung-Fang Hsu

Masters Theses 1911 - February 2014

This study proposed a finite element procedure for protein normal mode analysis (NMA). The finite element model adopted the protein solvent-excluded surface to generate a homogeneous and isotropic volume. A simplified triangular approximation of coarse molecular surface was generated from the original surface model by using the Gaussian-based blurring technique. Similar to the widely adopted elastic network model, the finite element model holds a major advantage over standard all-atom normal mode analysis: the computationally expensive process of energy minimization that may distort the initial protein structure has been eliminated. This modification significantly increases the efficiency of normal mode analysis. In …


Simulations Of Non-Contact Creep In Regimes Of Mixed Dominance, Maija Benitz Jan 2012

Simulations Of Non-Contact Creep In Regimes Of Mixed Dominance, Maija Benitz

Masters Theses 1911 - February 2014

Improvement of high temperature applications relies on the further development of ultra-high temperature materials (UHTMs). Higher performance and efficiency is driving the need for improvements in energy conversion and propulsion systems. Rocket nozzles, gas turbine engines and hypersonic aircraft depend on a better understanding of a material's performance at high temperatures. More specifically, the characterization of creep properties of high temperature materials is required. Conventional creep testing methods are limited to about 1700 degrees Celsius. Non-contact methods have been developed, which rotate spherical samples up to 33,000 rotations per second. A load is supplied by centripetal acceleration causing deformation of …


Finite Element Analysis Of A Femur To Deconstruct The Design Paradox Of Bone Curvature, Sameer Jade Jan 2012

Finite Element Analysis Of A Femur To Deconstruct The Design Paradox Of Bone Curvature, Sameer Jade

Masters Theses 1911 - February 2014

The femur is the longest limb bone found in humans. Almost all the long limb bones found in terrestrial mammals, including the femur studied herein, have been observed to be loaded in bending and are curved longitudinally. The curvature in these long bones increases the bending stress developed in the bone, potentially reducing the bone’s load carrying capacity, i.e. its mechanical strength. Therefore, bone curvature poses a paradox in terms of the mechanical function of long limb bones. The aim of this study is to investigate and explain the role of longitudinal bone curvature in the design of long bones. …


Investigating The Relationship Between Material Property Axes And Strain Orientations In Cebus Apella Crania, Christine M. Dzialo Jan 2012

Investigating The Relationship Between Material Property Axes And Strain Orientations In Cebus Apella Crania, Christine M. Dzialo

Masters Theses 1911 - February 2014

Probabilistic finite element analysis was used to determine whether there is a statistically significant relationship between maximum principal strain orientations and orthotropic material stiffness orientations in a primate cranium during mastication. We first sought to validate our cranium finite element model by sampling in-vivo strain and in-vivo muscle activation data during specimen mastication. A comparison of in vivo and finite element predicted (i.e. in silico) strains was performed to establish the realism of the FEM model. To the best of our knowledge, this thesis presents the world’s only complete in-vivo coupled with in-vitro validation data set of a primate cranium …