Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Finite element analysis

Missouri University of Science and Technology

Discipline
Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part I, Lan Li, Lei Yan, Wenyuan Cui, Yitao Chen, Tan Pan, Xinchang Zhang, Aaron Flood, Frank W. Liou Aug 2019

Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part I, Lan Li, Lei Yan, Wenyuan Cui, Yitao Chen, Tan Pan, Xinchang Zhang, Aaron Flood, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

During the part forming in laser powder bed fusion process, thermal distortion is one big problem due to the thermal stress which is caused by the high cooling rate and temperature gradient. Therefore, it is important to know the effect of process parameters on thermal and stress evolution in the melt zone. In this paper, a 3D finite element model for Selective Laser Melting (SLM) process based on sequentially coupled thermo-mechanical field analysis was developed for accurately predicting thermal history and surface features, like distortion and residual stress. Temperature dependent material properties for performed material 304L stainless steel are incorporated …


Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part Ii, Lan Li, Lei Yan, Yitao Chen, Tan Pan, Xinchang Zhang, Wenyuan Cui, Aaron Flood, Frank W. Liou Aug 2019

Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part Ii, Lan Li, Lei Yan, Yitao Chen, Tan Pan, Xinchang Zhang, Wenyuan Cui, Aaron Flood, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Finite Element Analysis (FEA) is used to predict the transient thermal cycle and optimize process parameters to analyze these effects on deformation and residual stresses. However, the process of predicting the thermal history in this process with the FEA method is usually time-consuming, especially for large-scale parts. In this paper, an effective predictive model of part deformation and residual stress was developed for accurately predicting deformation and residual stresses in large-scale parts. An equivalent body heat flux proposed from the single layer laser scan model was imported as the thermal load to the layer by layer model. The hatched layer …


Effects Of Local Ph On The Formation And Regulation Of Cristae Morphologies, Dong Hoon Song, Jonghyun Park, Martin A. Philbert, Ann Marie Sastry, Wei Lu Aug 2014

Effects Of Local Ph On The Formation And Regulation Of Cristae Morphologies, Dong Hoon Song, Jonghyun Park, Martin A. Philbert, Ann Marie Sastry, Wei Lu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Cristae, folded subcompartments of the inner mitochondrial membrane (IMM), have complex and dynamic morphologies. Since cristae are the major site of adenosine triphosphate synthesis, morphological changes of cristae have been studied in relation to functional states of mitochondria. In this sense, investigating the functional and structural significance of cristae may be critical for understanding progressive mitochondrial dysfunction. However, the detailed mechanisms of the formation and regulation of these cristae structures have not been fully elucidated. Among the hypotheses concerning the regulation of cristae morphologies, we exclusively investigate the effects of the local pH gradient on the cristae morphologies by using …


Rapid Tooling By Integrating Electroforming And Solid Freeform Fabrication Techniques, Bo Yang, Ming-Chuan Leu Aug 1999

Rapid Tooling By Integrating Electroforming And Solid Freeform Fabrication Techniques, Bo Yang, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper describes a rapid tooling process that integrates solid freeform fabrication (SFF) with electroforming to produce metal tools including molds, dies, and electrical discharge machining (EDM) electrodes. Based on experimental data analysis, the geometry and material of the SFF part, the properties of the electroformed metal, and the process parameters are significant factors that cause inaccuracy in the manufactured tools. Thermomechanical modeling and numerical simulation is used to determine the geometry of the SFF part and the electroform thickness for minimizing the manufacturing time and cost while satisfying the tooling accuracy requirement.