Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko Jan 2024

Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Automated fiber placement is a state-of-the-art manufacturing method which allows for precise control over layup design. However, AFP results in irregular morphology due to fiber tow deposition induced features such as tow gaps and overlaps. Factors such as the squeeze flow and resin bleed out, combined with large non-linear deformation, lead to morphological variability. To understand these complex interacting phenomena, a coupled multiphysics finite element framework was developed to simulate the compaction behavior around fiber tow gap regions, which consists of coupled chemo-rheological and flow-compaction analysis. The compaction analysis incorporated a visco-hyperelastic constitutive model with anisotropic tensorial prepreg viscosity, which …


Parallel-Sparse Symmetrical/Unsymmetrical Finite Element Domain Decomposition Solver With Multi-Point Constraints For Structural/Acoustic Analysis, Siroj Tungkahotara, Willie R. Watson, Duc T. Nguyen, Subramaniam D. Rajan Jan 2011

Parallel-Sparse Symmetrical/Unsymmetrical Finite Element Domain Decomposition Solver With Multi-Point Constraints For Structural/Acoustic Analysis, Siroj Tungkahotara, Willie R. Watson, Duc T. Nguyen, Subramaniam D. Rajan

Civil & Environmental Engineering Faculty Publications

Details of parallel-sparse Domain Decomposition (DD) with multi-point constraints (MPC) formulation are explained. Major computational components of the DD formulation are identified. Critical roles of parallel (direct) sparse and iterative solvers with MPC are discussed within the framework of DD formulation. Both symmetrical and unsymmetrical system of simultaneous linear equations (SLE) can be handled by the developed DD formulation. For symmetrical SLE, option for imposing MPC equations is also provided.

Large-scale (up to 25 million unknowns involving complex numbers) structural and acoustic Finite Element (FE) analysis are used to evaluate the parallel computational performance of the proposed DD implementation using …