Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Out-Of-Plane Load-Bearing And Mechanical Energy Absorption Properties Of Flexible Density-Graded Tpu Honeycombs, Ibnaj Anamika Anni, Kazi Zahir Uddin, Nicholas Pagliocca, Nand Singh, Oyindamola Rahman, George Youssef, Behrad Koohbor Aug 2022

Out-Of-Plane Load-Bearing And Mechanical Energy Absorption Properties Of Flexible Density-Graded Tpu Honeycombs, Ibnaj Anamika Anni, Kazi Zahir Uddin, Nicholas Pagliocca, Nand Singh, Oyindamola Rahman, George Youssef, Behrad Koohbor

Henry M. Rowan College of Engineering Faculty Scholarship

Honeycomb structures are widely used in applications that require excellent strain energy mitigation at low structural weights. The load-bearing and energy absorption capacity of honeycomb structures strongly depend on their cell wall thickness to edge ratios. This work studies the mechanical response and strain energy absorption characteristics of hexagonal honeycomb structures with various cell wall thicknesses in response to out-of-plane loading conditions. Honeycomb structures with various nominal densities are first additively manufactured from flexible thermoplastic polyurethane (TPU). A comprehensive experimental study characterized the mechanical strength, energy absorption performance, and the strain recoverability of the structures. Density-graded structures are then fabricated …


Computational Investigation Of The Post-Yielding Behavior Of 3d-Printed Polymer Lattice Structures, Abdalsalam Fadeel, Hasanain Abdulhadi, Golam Newaz, Raghavan Srinivasan, Ahsan Mian Feb 2022

Computational Investigation Of The Post-Yielding Behavior Of 3d-Printed Polymer Lattice Structures, Abdalsalam Fadeel, Hasanain Abdulhadi, Golam Newaz, Raghavan Srinivasan, Ahsan Mian

Mechanical and Materials Engineering Faculty Publications

Sandwich structures are widely used due to their light weight, high specific strength, and high specific energy absorption. Three-dimensional (3D) printing has recently been explored for creating the lattice cores of these sandwich structures. Experimental evaluation of the mechanical response of lattice cell structures (LCSs) is expensive in time and materials. As such, the finite element analysis (FEA) can be used to predict the mechanical behavior of LCSs with many different design variations more economically. Though there have been several reports on the use of FEA to develop models for predicting the post-yielding stages of 3D-printed LCSs, they are still …


Optimization Of Energy Absorption Performance Of Polymer Honeycombs By Density Gradation, Oyindamola Rahman, Behrad Koohbor Nov 2020

Optimization Of Energy Absorption Performance Of Polymer Honeycombs By Density Gradation, Oyindamola Rahman, Behrad Koohbor

Henry M. Rowan College of Engineering Faculty Scholarship

Density gradation has been analytically and experimentally proven to enhance the load-bearing and energy absorption efficiency of cellular solids. This paper focuses on the analytical optimization (by virtual experiments) of polymeric honeycomb structures made from thermoplastic polyurethane to achieve density-graded structures with combined desired mechanical properties. The global stress-strain curves of single-density honeycomb structures are used as input to an analytical model that enables the characterization of the constitutive response of density-graded hexagonal honeycombs with discrete and continuous gradations and for various gradients. The stress-strain outputs are used to calculate the specific energy absorption, efficiency, and ideality metrics for all …


Controllable Energy Absorption Of Double Sided Corrugated Tubes Under Axial Crushing, Hozhabr Mozafari, Shengmao Lin, Linxia Gu Jan 2017

Controllable Energy Absorption Of Double Sided Corrugated Tubes Under Axial Crushing, Hozhabr Mozafari, Shengmao Lin, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

To maximize the controllable energy absorption of corrugation troughs as observed in the single sided corrugated (SSC) tube, we proposed and tested a new structure design, i.e., double-sided corrugated (DSC) tube made of Al 6060-T6 aluminum alloy or CF1263 carbon/epoxy composite. Finite element models were developed to test the mechanical advantage of the DSC tube in comparison with both SSC and classical straight (S) tubes under axial crushing. Results have shown that the total absorbed energy of the DSC aluminum tube with 14 corrugations was 330% and 32% higher than that of the SSC tube with 14 corrugations and the …


Experimental Study Of Corrugated Metal-Composite Tubes Under Axial Loading, Arameh Eyvazian, Hozhabr Mozafari, Abdel Magid Hamouda Jan 2017

Experimental Study Of Corrugated Metal-Composite Tubes Under Axial Loading, Arameh Eyvazian, Hozhabr Mozafari, Abdel Magid Hamouda

Department of Mechanical and Materials Engineering: Faculty Publications

In this study, crushing behavior of corrugated metal-composite tube was examined experimentally under axial loading condition. Six types of specimens, classified into two groups of metal and metal-composite, were tested under quasi static axial loading. The failure mechanism and failure history of the specimens were presented and discussed. The experimental result showed that corrugated metal composite tubes demonstrate perfect energy absorption characteristics in terms of uniformity of load-displacement diagram, reduction of initial peak load and controlling failure mechanism. Moreover, it was also found that adding filament wound layer of composite on the surface of metallic corrugated tube compensated weakness of …


Impact Mechanics And High-Energy Absorbing Materials: Review, Pizhong Qiao, Mijia Yang, Florin Bobaru Oct 2008

Impact Mechanics And High-Energy Absorbing Materials: Review, Pizhong Qiao, Mijia Yang, Florin Bobaru

Department of Engineering Mechanics: Faculty Publications

In this paper a review of impact mechanics and high-energy absorbing materials is presented. We review different theoretical models (rigid-body dynamics, elastic, shock, and plastic wave propagation, and nonclassical or nonlocal models. and computational methods (finite-element, finite-difference, and mesh-free methods. used in impact mechanics. Some recent developments in numerical simulation of impact (e.g., peridynamics) and new design concepts proposed as high energy absorbing materials (lattice and truss structures, hybrid sandwich composites, metal foams, magnetorheological fluids, porous shape memory alloys. are discussed. Recent studies on experimental evaluation and constitutive modeling of strain rate-dependent polymer matrix composites are also presented. Impact damage …