Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Mechanical Engineering

Laser Powder Bed Fusion Of Nitihf High-Temperature Shape Memory Alloy: Effect Of Process Parameters On The Thermomechanical Behavior, Mohammadreza Nematollahi, Guher P. Toker, Keyvan Safaei, Alejandro Hinojos, S. Ehsan Saghaian, Othmane Benafan, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia Nov 2020

Laser Powder Bed Fusion Of Nitihf High-Temperature Shape Memory Alloy: Effect Of Process Parameters On The Thermomechanical Behavior, Mohammadreza Nematollahi, Guher P. Toker, Keyvan Safaei, Alejandro Hinojos, S. Ehsan Saghaian, Othmane Benafan, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Laser powder bed fusion has been widely investigated for shape memory alloys, primarily NiTi alloys, with the goal of tailoring microstructures and producing complex geometries. However, processing high temperature shape memory alloys (HTSMAs) remains unknown. In our previous study, we showed that it is possible to manufacture NiTiHf HTSMA, as one of the most viable alloys in the aerospace industry, using SLM and investigated the effect of parameters on defect formation. The current study elucidates the effect of process parameters (PPs) on the functionality of this alloy. Shape memory properties and the microstructure of additively manufactured Ni-rich NiTiHf alloys were …


Direct 3d Printing Of Silica Doped Transparent Magnesium Aluminate Spinel Ceramics, John M. Pappas, Xiangyang Dong Nov 2020

Direct 3d Printing Of Silica Doped Transparent Magnesium Aluminate Spinel Ceramics, John M. Pappas, Xiangyang Dong

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Transparent magnesium aluminate spinel ceramics were additively manufactured via a laser direct deposition method in this study. With a minimum porosity of 0.3% achieved, highly transparent spinel samples with the highest total optical transmittance of 82% at a wavelength of 632.8 nm, were obtained by a 3D printing approach. However, cracking was found to be a major issue affecting printed spinel samples. To control prevalent cracking, the effect of silica dopants was investigated. Increased silica dopants reduced average total crack length by up to 79% and average crack density by up to 71%. However, a high dopant level limited optical …


Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra G. Tanikella, Joshua M. Pearce Oct 2020

Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra G. Tanikella, Joshua M. Pearce

Michigan Tech Publications

Thermal sterilization is generally avoided for 3-D printed components because of the relatively low deformation temperatures for common thermoplastics used for material extrusion-based additive manufacturing. 3-D printing materials required for high-temperature heat sterilizable components for COVID-19 and other applications demands 3-D printers with heated beds, hot ends that can reach higher temperatures than polytetrafluoroethylene (PTFE) hot ends and heated chambers to avoid part warping and delamination. There are several high temperature printers on the market, but their high costs make them inaccessible for full home-based distributed manufacturing required during pandemic lockdowns. To allow for all these requirements to be met …


Laser Metal Deposition Of An Alcocrfeniti₀.₅ High-Entropy Alloy Coating On A Ti6al4v Substrate: Microstructure And Oxidation Behavior, Wenyuan Cui, Wei Li, Wei Ting Chen, Frank W. Liou Aug 2020

Laser Metal Deposition Of An Alcocrfeniti₀.₅ High-Entropy Alloy Coating On A Ti6al4v Substrate: Microstructure And Oxidation Behavior, Wenyuan Cui, Wei Li, Wei Ting Chen, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Ti6Al4V has been recognized as an attractive material, due to its combination of low density and favorable mechanical properties. However, its insufficient oxidation resistance has limited the high-temperature application. In this work, an AlCoCrFeNiTi0.5 high-entropy alloy (HEA) coating was fabricated on a Ti6Al4V substrate using laser metal deposition (LMD). The microstructure and isothermal oxidation behaviors were investigated. The microstructure of as-deposited HEA exhibited a Fe, Cr-rich A2 phase and an Al, Ni, Ti-enriched B2 phase. Its hardness was approximately 2.1 times higher than that of the substrate. The oxidation testing at 700⁰C and 800⁰C suggested that the HEA coating …


Understanding The Laser Powder Bed Fusion Of Alsi10mg Alloy, Holden Hyer, Le Zhou, Sharon Park, Guilherme Gottsfritz, George Benson, Bjorn Tolentino, Brandon Mcwilliams, Kyu Cho, Yongho Sohn Aug 2020

Understanding The Laser Powder Bed Fusion Of Alsi10mg Alloy, Holden Hyer, Le Zhou, Sharon Park, Guilherme Gottsfritz, George Benson, Bjorn Tolentino, Brandon Mcwilliams, Kyu Cho, Yongho Sohn

Mechanical Engineering Faculty Research and Publications

We examine the microstructural characteristics of LPBF AlSi10Mg produced by using a wide range of LPBF processing parameters with independently varied laser power, hatch spacing, scan speed, slice thickness, and the normalized energy density. The lower energy density produced lack of fusion flaws from residual interparticle spacing, while the higher energy density produced spherical pores from trapped gas. The highest density (> 99%) samples were produced by using an energy density of 32 to 54 J/mm3. Within this energy density range, use of smaller slice thicknesses increased the processing window that would produce dense AlSi10Mg samples. A cellular …


Application Of Optimized Laser Surface Re-Melting Process On Selective Laser Melted 316l Stainless Steel Inclined Parts, Jafar Ghorbani, Jianzhi Li, Anil K. Srivastava Aug 2020

Application Of Optimized Laser Surface Re-Melting Process On Selective Laser Melted 316l Stainless Steel Inclined Parts, Jafar Ghorbani, Jianzhi Li, Anil K. Srivastava

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Lower surface quality of selective laser melting (SLM) manufactured parts remains to be a key shortcoming particularly for high performance functional components. In this paper, the authors utilized Box–Behnken methodology to explore the effect of laser surface re-melting process parameters. The process parameters are:laser power, laser exposure time, laser point distance, and shell layer thickness. The experiments were conducted using Renishaw AM-250 machine. SLM manufactured parts with inclination of 45˚ up-skin were treated with a given surface roughness using laser surface re-melting (LSR). The optimization of process parameters was conducted using response surface methodology and the validation tests was carried …


Additive Manufacturing And Characterization Of Agi And Agi–Al2O3 Composite Electrolytes For Resistive Switching Devices, Benjamin J. Brownlee, Lok-Kun Tsui, Karthik Vempati, John B. Plumley, Brian D. Iverson, Thomas L. Peng, Fernando H. Garzon Jul 2020

Additive Manufacturing And Characterization Of Agi And Agi–Al2O3 Composite Electrolytes For Resistive Switching Devices, Benjamin J. Brownlee, Lok-Kun Tsui, Karthik Vempati, John B. Plumley, Brian D. Iverson, Thomas L. Peng, Fernando H. Garzon

Faculty Publications

This work investigates the electrochemical dynamics and performance of additively manufactured composite electrolytes for resistive switching. Devices are comprised of a Ag/AgI–Al2O3/Pt stack, where the solid state electrolyte is additively manufactured using extrusion techniques. AgI–Al2O3 composite electrolytes are characterized by x-ray diffraction and electrochemical impedance spectroscopy. The ionic conductivities of the electrolytes were measured for different concentrations of Al2O3, observing a maximum conductivity of 4.5 times the conductivity of pure AgI for composites with 20 mol. % Al2O3. There was little change in activation energy …


Effects Of Zirconia Doping On Additively Manufactured Alumina Ceramics By Laser Direct Deposition, John M. Pappas, Aditya R. Thakur, Xiangyang Dong Jul 2020

Effects Of Zirconia Doping On Additively Manufactured Alumina Ceramics By Laser Direct Deposition, John M. Pappas, Aditya R. Thakur, Xiangyang Dong

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The ability to additively manufacture functional alumina ceramics has the potential to lower manufacturing costs and development time for complex components. In this study, the doping effects of zirconia on laser direct deposited alumina ceramics were investigated. The microstructure of the printed samples was analyzed in terms of grain size and composition distribution. The addition of zirconia was found to accumulate along alumina grain boundaries and resulted in significant grain refinement. The zirconia doping largely reduced crack formation during processing compared to that of pure alumina samples. In the case of 10 wt% zirconia, cracking during deposition was nearly completely …


Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce Jun 2020

Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce

Michigan Tech Publications

This study provides designs for a low-cost, easily replicable open-source lab-grade digital scale that can be used as a precision balance. The design is such that it can be manufactured for use in most labs throughout the world with open-source RepRap-class material extrusion-based 3-D printers for the mechanical components and readily available open-source electronics including the Arduino Nano. Several versions of the design were fabricated and tested for precision and accuracy for a range of load cells. The results showed the open-source scale was found to be repeatable within 0.05 g with multiple load cells, with even better precision (0.005 …


Conversion Of Self-Contained Breathing Apparatus Mask To Open Source Powered Air-Purifying Particulate Respirator For Fire Fighter Covid-19 Response, Benjamin R. Hubbard, Joshua M. Pearce Jun 2020

Conversion Of Self-Contained Breathing Apparatus Mask To Open Source Powered Air-Purifying Particulate Respirator For Fire Fighter Covid-19 Response, Benjamin R. Hubbard, Joshua M. Pearce

Michigan Tech Publications

To assist firefighters and other first responders to use their existing equipment for respiration during the COVID-19 pandemic without using single-use, low-supply, masks, this study outlines an open source kit to convert a 3M-manufactured Scott Safety self-contained breathing apparatus (SCBA) into a powered air-purifying particulate respirator (PAPR). The open source PAPR can be fabricated with a low-cost 3-D printer and widely available components for less than $150, replacing commercial conversion kits saving 85% or full-fledged proprietary PAPRs saving over 90%. The parametric designs allow for adaptation to other core components and can be custom fit specifically to fire-fighter equipment, including …


Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra Gautam Tanikella, Joshua M. Pearce May 2020

Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Thermal sterilization is generally avoided for 3-D printed components because of the relatively low deformation temperatures for common thermoplastics used for material extrusion-based additive manufacturing. 3-D printing materials required for high-temperature heat sterilizable components for COVID-19 and other applications demands 3-D printers with heated beds, hot ends that can reach higher temperatures than polytetrafluoroethylene (PTFE) hot ends and heated chambers to avoid part warping and delamination. There are several high temperature printers on the market, but their high costs make them inaccessible for full home-based distributed manufacturing required during pandemic lockdowns. To allow for all these requirements to be met …


Design Of Versatile Feedback Control System Components For Selective Laser Sintering, Thomas Chessman May 2020

Design Of Versatile Feedback Control System Components For Selective Laser Sintering, Thomas Chessman

University Scholar Projects

Selective laser sintering (SLS) is an additive manufacturing technique that involves using a laser to fuse powdered material together, layer by layer, in order to create a 3-D product. Despite its numerous benefits over traditional methods of manufacturing, including higher efficiency, versatility, and the ability to process many materials, selective laser sintering suffers from its propensity to generate structural errors during operation.

Feedback control has been shown to improve fabrication quality in other laser-based additive manufacturing techniques when implemented properly. Widespread exploration of applying feedback control in SLS might lead to significant performance improvements in this form of manufacturing.

This …


Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam Pringle, Shane Oberloier, Nagendra Gautam Tanikella, Joshua M. Pearce May 2020

Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam Pringle, Shane Oberloier, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Access to nasopharyngeal swabs for sampling remain a bottleneck in some regions for COVID19 testing. This study develops a distributed manufacturing solution using only an open source manufacturing tool chain consisting of two types of open source 3-D printing and batch UV curing, and provides a parametric fully free design of a nasopharyngeal swab. The swab was designed using parametric OpenSCAD in two components (a head with engineered break point and various handles), which has several advantages: i) minimizing print time on relatively slow SLA printers, ii) enabling the use of smaller print volume open source SLA printers, iii) reducing …


Impact Of Part Thickness And Drying Conditions On Saturation Limits In Binder Jet Additive Manufacturing, Nathan B. Crane May 2020

Impact Of Part Thickness And Drying Conditions On Saturation Limits In Binder Jet Additive Manufacturing, Nathan B. Crane

Faculty Publications

Binder jetting (BJ) is a high build-rate additive manufacturing process with growing commercial interest. Growth in BJ applications is driven by the use of finer powders and improved post-processing methods that can produce dense, homogenous final parts. However, understanding of the basic droplet/powder interaction is relatively limited. This paper considers the impact of in-process drying, part geometry, and droplet size on a key printing parameter: binder saturation. Parts of varying thicknesses are printed with a range of saturation levels under various heating conditions. The ratio of the printed part mass to the theoretical part mass is used to detect bleeding. …


Additive Manufacturing Of Dense We43 Mg Alloy By Laser Powder Bed Fusion, Holden Hyer, Le Zhou, George Benson, Brandon Mcwilliams, Kyu Cho, Yongho Sohn May 2020

Additive Manufacturing Of Dense We43 Mg Alloy By Laser Powder Bed Fusion, Holden Hyer, Le Zhou, George Benson, Brandon Mcwilliams, Kyu Cho, Yongho Sohn

Mechanical Engineering Faculty Research and Publications

WE43 is a high-strength, corrosion-resistant Mg-alloy containing rare earths such as Y and Nb, and has potential for many lightweight structural or bioresorbable prosthetic applications. In this study, additive manufacturing of dense WE43 alloy by laser powder bed fusion (LPBF) from gas atomized powders has been accomplished through studies involving single track scan of wrought WE43, parametric variation of LPBF, microstructural analysis and mechanical testing, both in compression and tension. The Archimedes method and image analyses from optical micrographs were employed to document the LPBF of dense (>99 % relative density) WE43 using optimum parameters of 200 W laser …


Aluminum Parts Fabricated By Laser-Foil-Printing Additive Manufacturing: Processing, Microstructure, And Mechanical Properties, Chia Hung Hung, Yingqi Li, Austin Sutton, Wei Ting Chen, Xiangtao Gong, Heng Pan, Hai Lung Tsai, Ming-Chuan Leu Jan 2020

Aluminum Parts Fabricated By Laser-Foil-Printing Additive Manufacturing: Processing, Microstructure, And Mechanical Properties, Chia Hung Hung, Yingqi Li, Austin Sutton, Wei Ting Chen, Xiangtao Gong, Heng Pan, Hai Lung Tsai, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Fabrication of dense aluminum (Al-1100) parts (>99.3% of relative density) by our recently developed laser-foil-printing (LFP) additive manufacturing method was investigated as described in this paper. This was achieved by using a laser energy density of 7.0 MW/cm2 to stabilize the melt pool formation and create sufficient penetration depth with 300 μm thickness foil. The highest yield strength (YS) and ultimate tensile strength (UTS) in the LFP-fabricated samples reached 111 ± 8 MPa and 128 ± 3 MPa, respectively, along the laser scanning direction. These samples exhibited greater tensile strength but less ductility compared to annealed Al-1100 samples. Fractographic …


Additive Manufacturing Of Magnesium Alloys, Rakeshkumar Karunakaran, Sam Ortgies, Ali Tamayol, Florin Bobaru, Michael P. Sealy Jan 2020

Additive Manufacturing Of Magnesium Alloys, Rakeshkumar Karunakaran, Sam Ortgies, Ali Tamayol, Florin Bobaru, Michael P. Sealy

Department of Mechanical and Materials Engineering: Faculty Publications

Magnesium alloys are a promising new class of degradable biomaterials that have a similar stiffness to bone, which minimizes the harmful effects of stress shielding. Use of biodegradable magnesium implants eliminates the need for a second surgery for repair or removal. There is a growing interest to capitalize on additive manufacturing's unique design capabilities to advance the frontiers of medicine. However, magnesium alloys are difficult to 3D print due to the high chemical reactivity that poses a combustion risk. Furthermore, the low vaporization temperature of magnesium and common biocompatible alloying elements further increases the difficulty to print fully dense structures …


Influence Of Droplet Velocity, Spacing, And Inter-Arrival Time On Line Formation And Saturation In Binder Jet Additive Manufacturing, Trenton Colton, Nathan B. Crane Jan 2020

Influence Of Droplet Velocity, Spacing, And Inter-Arrival Time On Line Formation And Saturation In Binder Jet Additive Manufacturing, Trenton Colton, Nathan B. Crane

Faculty Publications

Binder Jetting (BJ) is a low-cost Additive Manufacturing (AM) process that uses inkjet technology to selectively bind particles in a powder bed. BJ relies on the ability to control, not only the placement of binder on the surface but also its imbibition into the powder bed. This is a complex process in which picoliter-sized droplets impact powder beds at velocities of 1-10 m/s. However, the effects of printing parameters such as droplet velocity, size, spacing, and inter-arrival time on saturation level (fraction of pore space filled with binder) and line formation (merging of droplets to form a line) are unknown. …


On Geometric Design Rules And In-Process Build Quality Monitoring Of Thin-Wall Features Made Using Laser Powder Bed Fusion Additive Manufacturing Process, Aniruddha Gaikwad Jan 2020

On Geometric Design Rules And In-Process Build Quality Monitoring Of Thin-Wall Features Made Using Laser Powder Bed Fusion Additive Manufacturing Process, Aniruddha Gaikwad

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The goal of this thesis is to quantify the link between the design features (geometry), in-process signatures, and build quality of parts made using the laser powder bed fusion (LPBF) additive manufacturing (AM) process. This knowledge is the foundational basis for proposing design rules in AM, as well as for detecting the impending build failures using in-process sensor data.

As a step towards this goal, the objectives of this work are two-fold:

1) Quantify the effect of the geometry and orientation on the build quality of thin-wall features. To explain further, the geometry related factor is the ratio of the …