Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Cooling Under Applied Stress Rejuvenates Amorphous Alloys And Enhances Their Ductility, Nikolai Priezjev Dec 2020

Cooling Under Applied Stress Rejuvenates Amorphous Alloys And Enhances Their Ductility, Nikolai Priezjev

Mechanical and Materials Engineering Faculty Publications

The effect of tensile stress applied during cooling of binary glasses on the potential energy states and mechanical properties is investigated using molecular dynamics simulations. We study the three-dimensional binary mixture that was first annealed near the glass transition temperature and then rapidly cooled under tension into the glass phase. It is found that at larger values of applied stress, the liquid glass former freezes under higher strain and its potential energy is enhanced. For a fixed cooling rate, the maximum tensile stress that can be applied during cooling is reduced upon increasing initial temperature above the glass transition point. …


Developing An Equivalent Solid Material Model For Bcc Lattice Cell Structures Involving Vertical And Horizontal Struts, Tahseen A. Alwattar, Ahsan Mian Jun 2020

Developing An Equivalent Solid Material Model For Bcc Lattice Cell Structures Involving Vertical And Horizontal Struts, Tahseen A. Alwattar, Ahsan Mian

Mechanical and Materials Engineering Faculty Publications

In this study, a body-centered cubic (BCC) lattice unit cell occupied inside a frame structure to create a so-called “InsideBCC” is considered. The equivalent quasi-isotropic properties required to describe the material behavior of the InsideBCC unit cell are equivalent Young’s modulus ( E e ) , equivalent shear modulus ( G e ) , and equivalent Poisson’s ratio ( ν e ) . The finite element analysis (FEA) based computational approach is used to simulate and calculate the mechanical responses of InsideBCC unit cell, which are the mechanical responses of the equivalent solid. Two separates finite element models are then …


Additive Manufacturing And How 3d Printing Is Fighting Covid-19, Raghavan Srinivasan, Ahsan Mian, Joy Gockel, Laura M. Luehrmann May 2020

Additive Manufacturing And How 3d Printing Is Fighting Covid-19, Raghavan Srinivasan, Ahsan Mian, Joy Gockel, Laura M. Luehrmann

Mechanical and Materials Engineering Faculty Publications

This is the fourth installment in the Shelter in Place (SiP) Lecture series. This installment covers the creative ways that 3D printing has supported efforts to combat the pandemic. It covers the basics of what 3D printing is, some of the various creative projects that have used 3D printing to combat the pandemic, among other topics and questions by the pandemic.


Characteristics Of Nanosilver Ink (Utdag) Microdroplets And Lines On Polyimide During Inkjet Printing At High Stage Velocity, Aamir Hamad, Adam Archacki, Ahsan Mian Jan 2020

Characteristics Of Nanosilver Ink (Utdag) Microdroplets And Lines On Polyimide During Inkjet Printing At High Stage Velocity, Aamir Hamad, Adam Archacki, Ahsan Mian

Mechanical and Materials Engineering Faculty Publications

The performance of printed electronics strongly depends on printing techniques and printing resolution that enhance their electrical and mechanical properties. In this research paper, a Jetlab 4xl was used to control and dispense microdroplets of highly conductive nanosilver ink (UTDAg) on a polyimide substrate. The waveform effect on the droplet generation is characterized by measuring the size and the speed of the drops. The behavior of ejected drops on the substrate is studied by printing lines at different drop spacing and stage velocity. The jetting parameters that drive the piezoelectric actuator were properly determined and two waveforms (bipolar) were created …


The Effect Of Thermal History On The Atomic Structure Andmechanical Properties Of Amorphous Alloys, Nikolai V. Priezjev Jan 2020

The Effect Of Thermal History On The Atomic Structure Andmechanical Properties Of Amorphous Alloys, Nikolai V. Priezjev

Mechanical and Materials Engineering Faculty Publications

The influence of thermal processing on the potential energy, atomic structure, and mechanical properties of metallic glasses is examined using molecular dynamics simulations. We study the three-dimensional binary mixture, which was first relaxed near the glass transition temperature and zero pressure, and then rapidly cooled deep into the glass phase. It was found that glasses annealed at higher temperatures are relocated to higher energy states and their average glass structure remains more disordered, as reflected in the height of the first two peaks in the pair distribution function. The results of mechanical testing demonstrate that both the shear modulus and …