Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Fan Performance Scaling With Inlet Distortions, J. J. Defoe, E. Etemadi, D. K. Hall Jun 2018

Fan Performance Scaling With Inlet Distortions, J. J. Defoe, E. Etemadi, D. K. Hall

Mechanical, Automotive & Materials Engineering Publications

Applications such as boundary-layer-ingesting fans, and compressors in turboprop engines require continuous operation with distorted inflow. A low-speed axial fan with incompressible flow is studied in this paper. The objectives are to (1) identify the physical mechanisms which govern the fan response to inflow distortions and (2) determine how fan performance scales as the type and severity of inlet distortion varies at the design flow coefficient. A distributed source term approach to modeling the rotor and stator blade rows is used in numerical simulations in this paper. The model does not include viscous losses so that changes in diffusion factor …


Soot And Spectral Radiation Modeling For High-Pressure Turbulent Spray Flames, Sebastian Ferreyro Fernandez, C. Paul, A. Sircar, A. Imren, D. C. Haworth, Somesh Roy, Michael F. Modest Apr 2018

Soot And Spectral Radiation Modeling For High-Pressure Turbulent Spray Flames, Sebastian Ferreyro Fernandez, C. Paul, A. Sircar, A. Imren, D. C. Haworth, Somesh Roy, Michael F. Modest

Mechanical Engineering Faculty Research and Publications

A transported probability density function (PDF) method and a photon Monte Carlo/line-by-line (PMC/LBL) spectral model are exercised to generate physical insight into soot processes and spectral radiation characteristics in transient high-pressure turbulent n-dodecane spray flames, under conditions that are relevant for compression-ignition piston engines. PDF model results are compared with experimental measurements and with results from a locally well-stirred reactor (WSR) model that neglects unresolved turbulent fluctuations in composition and temperature. Computed total soot mass and soot spatial distributions are highly sensitive to the modeling of unresolved turbulent fluctuations. To achieve reasonable agreement between model and experiment and to capture …


Erosion Degradation Characteristics Of A Linear Electro-Hydrostatic Actuator Under A High-Frequency Turbulent Flow Field, Yuan Li, Shaoping Wang, Mileta M. Tomovic, Chao Zhang Jan 2018

Erosion Degradation Characteristics Of A Linear Electro-Hydrostatic Actuator Under A High-Frequency Turbulent Flow Field, Yuan Li, Shaoping Wang, Mileta M. Tomovic, Chao Zhang

Engineering Technology Faculty Publications

The paper proposes a performance degradation analysis model based on dynamic erosion wear for a novel Linear Electro-Hydrostatic Actuator (LEHA). Rather than the traditional statistical methods based on degradation data, the method proposed in this paper firstly analyzes the dominant progressive failure mode of the LEHA based on the working principle and working conditions of the LEHA. The Computational Fluid Dynamics (CFD) method, combining the turbulent theory and the micro erosion principle, is used to establish an erosion model of the rectification mechanism. The erosion rates for different port openings, under a time-varying flow field, are obtained. The piecewise linearization …