Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Development Of A Multi-Material Stereolithography System, Ho-Chan Kim, Jae-Won Choi, Ryan B. Wicker Jan 2010

Development Of A Multi-Material Stereolithography System, Ho-Chan Kim, Jae-Won Choi, Ryan B. Wicker

Mechanical Engineering Faculty Research

Researchers continue to explore possibilities for expanding additive manufacturing (AM) technologies into direct product manufacturing. One limitation is in the materials available for use in AM that can meet the needs of end-use applications. Stereolithography (SL) is an AM technology well known for its precision and high quality surface finish capabilities. SL builds parts by selectively crosslinking or solidifying photo-curable liquid resins, and the resin industry has been continuously developing new resins with improved performance characteristics. This paper introduces a unique SL machine that can fabricate parts out of multiple SL materials. The technology is based on using multiple vats …


High School Bridge Program: A Multidisciplinary Stem Research Program, Jiang Zhe, Dennis Doverspike, Julie Zhao, Paul C. Lam, Craig C. Menzemer Jan 2010

High School Bridge Program: A Multidisciplinary Stem Research Program, Jiang Zhe, Dennis Doverspike, Julie Zhao, Paul C. Lam, Craig C. Menzemer

Mechanical Engineering Faculty Research

A Science, Technology, Engineering and Math (STEM) summer Bridge Program was developed for high school students. The program was designed to encourage students to consider choosing an engineering major in college and to explore STEM as a future career. This was accomplished through a 10-week program involving multidisciplinary research activities. The participants in the program included 33 high school students. Among former participants in position to make a choice in terms of attending college, 100% had chosen to continue on in college, and 86% had chosen to major in a STEM area. The results indicated that that the program had …


On The Effect Of Hydrodynamic Slip On The Polarization Of A Nonconducting Spherical Particle In An Alternating Electric Field, Hui Zhao Jan 2010

On The Effect Of Hydrodynamic Slip On The Polarization Of A Nonconducting Spherical Particle In An Alternating Electric Field, Hui Zhao

Mechanical Engineering Faculty Research

The polarization of a charged, dielectric, spherical particle with a hydrodynamically slipping surface under the influence of a uniform alternating electric field is studied by solving the standard model (the Poisson–Nernst–Planck equations). The dipole moment characterizing the strength of the polarization is computed as a function of the double layer thickness, the electric field frequency, the particle’s surface charge, and the slip length. Our studies reveal that two processes contribute to the dipole moment: ion transport inside the double layer driven by the electric field and the particle’s electrophoretic motion. The hydrodynamic slip will simultaneously impact both processes. In the …


Electro-Osmotic Flow Over A Charged Superhydrophobic Surface, Hui Zhao Jan 2010

Electro-Osmotic Flow Over A Charged Superhydrophobic Surface, Hui Zhao

Mechanical Engineering Faculty Research

Bubbles can be trapped inside textured structures such as grooves, forming a superhydrophobic surface. A superhydrophobic surface has a large effective hydrodynamic slip length compared to a smooth hydrophobic surface and holds the promise of enhancing electrokinetic flows that find many interesting applications in microfluidics. However, recent theoretical studies suggested that electro-osmotic flows over a weakly charged superhydrophobic surface

the zeta potential of the surface is smaller than the thermal potential (25 mV) can only be enhanced when liquid-gas interfaces are charged [T. M. Squires, Phys. Fluids 20, 092105 (2008); Bahga et al., J. Fluid Mech. 644, 245 (2010)]. So …