Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Mechanical Engineering

Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto Feb 2024

Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto

Faculty Publications

Residual stresses developed during additive manufacturing (AM) can influence the mechanical performance of structural components in their intended applications. In this study, thermomechanical residual stress simulations of the laser powder bed fusion (LPBF) process are conducted for both simplified (plate and cube-shaped) geometries as well as five complex lattice geometries fabricated with Inconel 718. These simulations are conducted with the commercial software package Simufact Additive©, which uses a nonlinear finite element analysis and layer-by-layer averaging approach in determining residual stresses. To verify the efficacy of the Simufact Additive© simulations, numerical results for the plate and cube-shape geometries are analyzed for …


Heterogeneous Sensor Data Fusion For Multiscale, Shape Agnostic Flaw Detection In Laser Powder Bed Fusion Additive Manufacturing, Benjamin Bevans, Christopher Barrett, Thomas Spears, Aniruddha Gaikwad, Alex Riensche, Harold (Scott) Halliday, Prahalada Rao Mar 2023

Heterogeneous Sensor Data Fusion For Multiscale, Shape Agnostic Flaw Detection In Laser Powder Bed Fusion Additive Manufacturing, Benjamin Bevans, Christopher Barrett, Thomas Spears, Aniruddha Gaikwad, Alex Riensche, Harold (Scott) Halliday, Prahalada Rao

Department of Mechanical and Materials Engineering: Faculty Publications

We developed and applied a novel approach for shape agnostic detection of multiscale flaws in laser powder bed fusion (LPBF) additive manufacturing using heterogenous in-situ sensor data. Flaws in LPBF range from porosity at the micro-scale (< 100 μm), layer related inconsistencies at the meso-scale (100 μm to 1 mm) and geometry-related flaws at the macroscale (> 1 mm). Existing data-driven models are primarily focused on detecting a specific type of LPBF flaw using signals from one type of sensor. Such approaches, which are trained on data from simple cuboid and cylindrical-shaped coupons, have met limited success when used for detecting multiscale flaws in complex LPBF parts. The objective of this work is to develop a heterogenous sensor data fusion …


Computational Based Investigation Of Lattice Cell Optimization Under Uniaxial Compression Load, Derek G. Spear, Jeremiah S. Lane, Anthony N. Palazotto, Ryan A. Kemnitz Mar 2022

Computational Based Investigation Of Lattice Cell Optimization Under Uniaxial Compression Load, Derek G. Spear, Jeremiah S. Lane, Anthony N. Palazotto, Ryan A. Kemnitz

Faculty Publications

Structural optimization is a methodology used to generate novel structures within a design space by finding a maximum or minimum point within a set of constraints. Topology optimization, as a subset of structural optimization, is often used as a means for light-weighting a structure while maintaining mechanical performance. This article presents the mathematical basis for topology optimization, focused primarily on the Bi-directional Evolutionary Structural Optimization (BESO) and Solid Isotropic Material with Penalization (SIMP) methodologies, then applying the SIMP methodology to a case study of additively manufactured lattice cells. Three lattice designs were used: the Diamond, I-WP, and Primitive cells. These …


Reducing Corrosion Of Additive Manufactured Magnesium Alloys By Interlayer Ultrasonic Peening, M. P. Sealy, R. Karunakaran, S. Ortgies, G. Madireddy, A. P. Malshe, K. P. Rajurkar Jan 2021

Reducing Corrosion Of Additive Manufactured Magnesium Alloys By Interlayer Ultrasonic Peening, M. P. Sealy, R. Karunakaran, S. Ortgies, G. Madireddy, A. P. Malshe, K. P. Rajurkar

Department of Mechanical and Materials Engineering: Faculty Publications

Additive manufad (AM) magn alloys corrode rapidly due to tensile stress and coarse microstructures. Cyclically combining (hybridizing) additive manufacturing with interlayer ultrasonic peening was proposed as a solution to improve corrosion resistance of additive manufactured magnesium WE43 alloy through strengthening mechanisms and compressive residual stress. Applying interlayer peening work hardened discrete layers and formed a glocal integrity of regional grain refinement and subsurface compressive residual stress barriers. Tensile residual stress that typically accelerates corrosion decreased 90%. Results showed time-resolved control over corrosion was attainable by interlayer peening, and local corrosion within print cells decreased 57% with respect to as-printed WE43.


Recurrence Network Analysis Of Design-Quality Interactions In Additive Manufacturing, Ruimin Chen, Prahalada K. Rao, Yan Lu, Edward W. Reutzel, Hui Yang Jan 2021

Recurrence Network Analysis Of Design-Quality Interactions In Additive Manufacturing, Ruimin Chen, Prahalada K. Rao, Yan Lu, Edward W. Reutzel, Hui Yang

Department of Mechanical and Materials Engineering: Faculty Publications

Powder bed fusion (PBF) additive manufacturing (AM) provides a great level of flexibility in the design-driven build of metal products. However, the more complex the design, the more difficult it becomes to control the quality of AM builds. The quality challenge persistently hampers the widespread application of AM technology. Advanced imaging (e.g., X-ray computed tomography scans and high-resolution optical images) has been increasingly explored to enhance the visibility of information and improve the AM quality control. Realizing the full potential of imaging data depends on the advent of information processing methodologies for the analysis of design-quality interactions. This paper presents …


Process-Structure Relationship In The Directed Energy Deposition Of Cobalt-Chromium Alloy (Stellite 21) Coatings, Ziyad M. Smoqi, Joshua Toddy, Harold (Scott) Halliday, Jeffrey E. Shield, Prahalada K. Rao Jan 2021

Process-Structure Relationship In The Directed Energy Deposition Of Cobalt-Chromium Alloy (Stellite 21) Coatings, Ziyad M. Smoqi, Joshua Toddy, Harold (Scott) Halliday, Jeffrey E. Shield, Prahalada K. Rao

Department of Mechanical and Materials Engineering: Faculty Publications

In this work, we accomplished the crack-free directed energy deposition (DED) of a multi-layer Cobalt- Chromium alloy coating (Stellite 21) on Inconel 718 substrate. Stellite alloys are used as coating materials given their resistance to wear, corrosion, and high temperature. The main challenge in DED of Stellite coatings is the proclivity for crack formation during printing. The objective of this work is to characterize the effect of the input energy density and localized laser-based preheating on the characteristics of the deposited coating, namely, crack formation, microstructural evolution, dilution of the coating composition due to diffusion of iron and nickel from …


Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce Jun 2020

Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce

Michigan Tech Publications

This study provides designs for a low-cost, easily replicable open-source lab-grade digital scale that can be used as a precision balance. The design is such that it can be manufactured for use in most labs throughout the world with open-source RepRap-class material extrusion-based 3-D printers for the mechanical components and readily available open-source electronics including the Arduino Nano. Several versions of the design were fabricated and tested for precision and accuracy for a range of load cells. The results showed the open-source scale was found to be repeatable within 0.05 g with multiple load cells, with even better precision (0.005 …


Additive Manufacturing Of Magnesium Alloys, Rakeshkumar Karunakaran, Sam Ortgies, Ali Tamayol, Florin Bobaru, Michael P. Sealy Jan 2020

Additive Manufacturing Of Magnesium Alloys, Rakeshkumar Karunakaran, Sam Ortgies, Ali Tamayol, Florin Bobaru, Michael P. Sealy

Department of Mechanical and Materials Engineering: Faculty Publications

Magnesium alloys are a promising new class of degradable biomaterials that have a similar stiffness to bone, which minimizes the harmful effects of stress shielding. Use of biodegradable magnesium implants eliminates the need for a second surgery for repair or removal. There is a growing interest to capitalize on additive manufacturing's unique design capabilities to advance the frontiers of medicine. However, magnesium alloys are difficult to 3D print due to the high chemical reactivity that poses a combustion risk. Furthermore, the low vaporization temperature of magnesium and common biocompatible alloying elements further increases the difficulty to print fully dense structures …


Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy Jul 2019

Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy

Department of Mechanical and Materials Engineering: Faculty Publications

Additive manufacturing (AM) of metals often results in parts with unfavorable mechanical properties. Laser peening (LP) is a high strain rate mechanical surface treatment that hammers a workpiece and induces favorable mechanical properties. Peening strain hardens a surface and imparts compressive residual stresses improving the mechanical properties of a material. This work investigates the role of LP on layer-by-layer processing of 3D printed metals using finite element analysis. The objective is to understand temporal and spatial residual stress development after thermal and mechanical cancellation caused by cyclically coupling printing and peening. Results indicate layer peening frequency is a critical process …


Glocal Integrity In 420 Stainless Steel By Asynchronous Laser Processing, Michael P. Sealy, Haitham Hadidi, Cody Kanger, X. L. Yan, Bai Cui, J. A. Mcgeough Jan 2019

Glocal Integrity In 420 Stainless Steel By Asynchronous Laser Processing, Michael P. Sealy, Haitham Hadidi, Cody Kanger, X. L. Yan, Bai Cui, J. A. Mcgeough

Department of Mechanical and Materials Engineering: Faculty Publications

Cold working individual layers during additive manufacturing (AM) by mechanical surface treatments, such as peening, effectively “prints” an aggregate surface integrity that is referred to as a glocal (i.e., local with global implications) integrity. Printing a complex, pre-designed glocal integrity throughout the build volume is a feasible approach to improve functional performance while mitigating distortion. However, coupling peening with AM introduces new manufacturing challenges, namely thermal cancellation, whereby heat relaxes favorable residual stresses and work hardening when printing on a peened layer. Thus, this work investigates glocal integrity formation from cyclically coupling LENS® with laser peening on 420 stainless steel.


Selective Laser Sintering; A Design Of Experiments, Philip David Hopkins, Victor Castillo Phd Aug 2012

Selective Laser Sintering; A Design Of Experiments, Philip David Hopkins, Victor Castillo Phd

STAR Program Research Presentations

Additive Manufacturing (AM), also commonly known as 3D Printing or Rapid Prototyping, is a method of manufacturing that provides for the ability to make intricate internal features and easily customizable parts. The concept is to break a Computer Aided Design (CAD) file into a series of thin layers that are sent to the machine and laid down one layer at a time. Just like any other form of processing, material properties can alter by undergoing this process. Manipulating various parameters of the AM process can allow for different properties to be achieved. For this reason, an in depth study will …