Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Chemical Engineering

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 219

Full-Text Articles in Mechanical Engineering

A Review Of Dielectric Barrier Discharge Cold Atmospheric Plasma For Surface Sterilization And Decontamination, Kolawole Adesina, Ta Chun Lin, Yue-Wern Huang, Marek Locmelis, Daoru Frank Han Jan 2024

A Review Of Dielectric Barrier Discharge Cold Atmospheric Plasma For Surface Sterilization And Decontamination, Kolawole Adesina, Ta Chun Lin, Yue-Wern Huang, Marek Locmelis, Daoru Frank Han

Biological Sciences Faculty Research & Creative Works

Numerous investigations have shown that non-equilibrium discharges at atmospheric pressure, also known as "cold atmospheric plasma" (CAP) are efficient to remove biological contaminants from surfaces of a variety of materials. Recently, CAP has quickly advanced as a technique for microbial cleaning, wound healing, and cancer therapy due to the chemical and biologically active radicals it produces, known collectively as reactive oxygen and nitrogen species (RONS). This article reviews studies pertaining to one of the atmospheric plasma sources known as Dielectric Barrier Discharge (DBD) which has been widely used to treat materials with microbes for sterilization, disinfection, and decontamination purposes. To …


Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise Dec 2023

Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The field of additive manufacturing (AM) has gained a significant amount of popularity due to the increasing need for more sustainable manufacturing techniques and the adaptive development of complex product geometries. The problem is that AM parts routinely exhibit flaws or weaknesses that affect functionality or performance. Over the years, surface treatments have been developed to compensate certain flaws or weaknesses in manufactured products. Combining surface treatments with the modularity of additive manufacturing could lead to more adaptable and creative improvements of product functions in the future. The current work evaluates the feasibility of pursuing a new research axis in …


Stereoscopic-Based Mass Properties Estimation For Warhead Fragments, Alessia Nocerino, Katharine Larsen, Riccardo Bevilacqua, Elisabetta L. Jerome Nov 2023

Stereoscopic-Based Mass Properties Estimation For Warhead Fragments, Alessia Nocerino, Katharine Larsen, Riccardo Bevilacqua, Elisabetta L. Jerome

Student Works

FRAGMENTATION characteristics such as spatial distribution, number of fragments, fragment velocity, and fragment mass can be used to characterize the lethality of a fragmenting weapon or any metal cased explosive [1,2]. However, most warhead tests and evaluations are limited to static arena testing, where fragment characteristics must be collected by hand. Recently, stereoscopic imaging techniques have been added to static arena tests. Using this method, position tracks can be collected for each fragment, and then velocity information can be found. This paper proposes a method to estimate the mass and moment of inertia using data collected by a stereoscopic imaging …


Evolution Of Glassy Carbon Derived From Pyrolysis Of Furan Resin, Josh Kemppainen, Ivan Gallegos, Aaron Krieg, Jacob R. Gissinger, Kristopher E. Wise, Margaret Kowalik, Julia A. King, S. Gowtham, Adri Van Duin, Gregory Odegard Oct 2023

Evolution Of Glassy Carbon Derived From Pyrolysis Of Furan Resin, Josh Kemppainen, Ivan Gallegos, Aaron Krieg, Jacob R. Gissinger, Kristopher E. Wise, Margaret Kowalik, Julia A. King, S. Gowtham, Adri Van Duin, Gregory Odegard

Michigan Tech Publications, Part 2

Glassy carbon (GC) material derived from pyrolyzed furan resin was modeled by using reactive molecular dynamics (MD) simulations. The MD polymerization simulation protocols to cure the furan resin precursor material are validated via comparison of the predicted density and Young's modulus with experimental values. The MD pyrolysis simulations protocols to pyrolyze the furan resin precursor is validated by comparison of calculated density, Young's modulus, carbon content, sp carbon content, the in-plane crystallite size, out-of-plane crystallite stacking height, and interplanar crystallite spacing with experimental results from the literature for furan resin derived GC. The modeling methodology established in this work can …


The Plastics Collection Reference Packet, Special Collections Research Center Jul 2023

The Plastics Collection Reference Packet, Special Collections Research Center

Special Collections Research Center

This reference packet is an informational tool to support further research into the history of plastics—whether interested in companies, individuals within the plastics industry's history, historical plastics materials, essays, and more. All content featured within this packet was previously published on the former plastics.syr.edu website as part of a Syracuse University Libraries and Special Collections Research Center (SCRC) partnership established in 2007 with the Plastics Pioneers Association (PPA)—an association of plastics industry professionals interested in preserving the plastics industry's past.


Exploring Methods For Recycling Filament Waste In 3d Printing, Max Rios Carballo May 2023

Exploring Methods For Recycling Filament Waste In 3d Printing, Max Rios Carballo

Publications and Research

The goal of the current study is to investigate cutting-edge techniques for recycling filament waste from 3D printing procedures. Appropriate waste management techniques are required to reduce this trash's harmful environmental consequences. The goal of the project is to look at new methods for recycling filament waste in order to minimize disposal and encourage reuse. To acquire data from pertinent papers and research, a thorough literature review methodology was used. The findings show that this issue may be resolved utilizing a variety of recycling techniques, including shredding, melting, and re-extrusion. The type of filament waste and the intended goal will …


Concentration Field Based Micropore Flow Rate Measurements, Matia P. Edwards, Samuel F. D. J. Gómez, Michael S. H. Boutilier Jan 2023

Concentration Field Based Micropore Flow Rate Measurements, Matia P. Edwards, Samuel F. D. J. Gómez, Michael S. H. Boutilier

Chemical and Biochemical Engineering Publications

Demand is growing for a larger catalogue of experimental techniques to measure flow rates through micro-/nanoscale systems for both fundamental research and device development. Flow emerging from a hole in a plane wall is a common system of interest in such work for its relevance to membrane separation. In this paper, we consider the possibility of measuring volume flow rates through small scale orifice plates from images of dye dispersions downstream. Based on approximate analytical solutions to the advection–diffusion equation, we show that, at low Reynolds numbers, the concentration in the nearly hemispherical plume that forms increases linearly with inverse …


Conductive 3d Nano-Biohybrid Systems Based On Densified Carbon Nanotube Forests And Living Cells, Roya Bagheri, Alicia K. Ball, Masoud Kasraie, Aparna Chandra, Xinqian Chen, Ibrahim Miskioglu, Zhiying Shan, Parisa Pour Shahid Saeed Abadi Jan 2023

Conductive 3d Nano-Biohybrid Systems Based On Densified Carbon Nanotube Forests And Living Cells, Roya Bagheri, Alicia K. Ball, Masoud Kasraie, Aparna Chandra, Xinqian Chen, Ibrahim Miskioglu, Zhiying Shan, Parisa Pour Shahid Saeed Abadi

Michigan Tech Publications, Part 2

Conductive biohybrid cell-material systems have applications in bioelectronics and biorobotics. To date, conductive scaffolds are limited to those with low electrical conductivity or 2D sheets. Here, 3D biohybrid conductive systems are developed using fibroblasts or cardiomyocytes integrated with carbon nanotube (CNT) forests that are densified due to interactions with a gelatin coating. CNT forest scaffolds with a height range of 120–240 µm and an average electrical conductivity of 0.6 S/cm are developed and shown to be cytocompatible as evidenced from greater than 89% viability measured by live-dead assay on both cells on day 1. The cells spread on top and …


Comparative Analysis Of Injection Of Pyrolysis Oil From Plastics And Gasoline Into The Engine Cylinder And Atomization By A Direct High-Pressure Injector, Magdalena Szwaja, Jeffrey Naber, David Shonnard, Daniel G. Kulas, Ali Zolghadr, Stanislaw Szwaja Dec 2022

Comparative Analysis Of Injection Of Pyrolysis Oil From Plastics And Gasoline Into The Engine Cylinder And Atomization By A Direct High-Pressure Injector, Magdalena Szwaja, Jeffrey Naber, David Shonnard, Daniel G. Kulas, Ali Zolghadr, Stanislaw Szwaja

Michigan Tech Publications

The article discusses the results of experimental studies on the course of pyrolysis oil injection through the high-pressure injector of a direct-injection engine. The pyrolysis oil used for the tests was derived from waste plastics (mainly high-density polyethylene—HDPE). This oil was then distilled. The article also describes the production technology of this pyrolysis oil on a laboratory scale. It presents the results of the chemical composition of the raw pyrolysis oil and the oil after the distillation process using GC-MS analysis. Fuel injection tests were carried out for the distilled pyrolysis oil and a 91 RON gasoline in order to …


Accurate Predictions Of Thermoset Resin Glass Transition Temperatures From All-Atom Molecular Dynamics Simulation, Gregory Odegard, Sagar Patil, Prashik Gaikwad, Prathamesh Deshpande, Aaron Krieg, Sagar P. Shah, Aspen Reyes, Tarik Dickens, Julia A. King, Marianna Maiaru Sep 2022

Accurate Predictions Of Thermoset Resin Glass Transition Temperatures From All-Atom Molecular Dynamics Simulation, Gregory Odegard, Sagar Patil, Prashik Gaikwad, Prathamesh Deshpande, Aaron Krieg, Sagar P. Shah, Aspen Reyes, Tarik Dickens, Julia A. King, Marianna Maiaru

Michigan Tech Publications

To enable the design and development of the next generation of high-performance composite materials, there is a need to establish improved computational simulation protocols for accurate and efficient prediction of physical, mechanical, and thermal properties of thermoset resins. This is especially true for the prediction of glass transition temperature (Tg), as there are many discrepancies in the literature regarding simulation protocols and the use of cooling rate correction factors for predicting values using molecular dynamics (MD) simulation. The objectives of this study are to demonstrate accurate prediction the Tg with MD without the use of cooling rate correction factors and …


Impact Of Spray Coating On The Performance Of Hydrophobic Membranes, Dominick J. Maiorano, Hamid Fattahijuybari, David Warsinger Aug 2022

Impact Of Spray Coating On The Performance Of Hydrophobic Membranes, Dominick J. Maiorano, Hamid Fattahijuybari, David Warsinger

Discovery Undergraduate Interdisciplinary Research Internship

Membrane distillation (MD) is a rapidly emerging water treatment technology used to combat the global water crisis. Membrane pore wetting is a primary barrier to widespread industrial use of MD. The primary causes of membrane wetting are membrane fouling and an exceedance of liquid entry pressure. The development of different types of polymer membranes and the use of pretreatment have led to significant movement towards the prevention of wetting in MD. We sought to take a new approach to combat membrane wetting that involves coating these membranes with hydrophilic chemical compounds, which consequently would decrease their air permeability. Pulling data …


Impact Of Ultrathin Coating Layer On Lithium-Ion Intercalation Into Particles For Lithium-Ion Batteries, Yufang He, Hiep Pham, Xinhua Liang, Jonghyun Park Jul 2022

Impact Of Ultrathin Coating Layer On Lithium-Ion Intercalation Into Particles For Lithium-Ion Batteries, Yufang He, Hiep Pham, Xinhua Liang, Jonghyun Park

Chemical and Biochemical Engineering Faculty Research & Creative Works

Ultrathin film coatings on battery materials via atomic layer deposition (ALD) have been demonstrated as an efficient technology for battery performance enhancement. However, the fundamental understanding on lithium intercalation into active materials through the interface between the coating and active materials is unclear, which makes it difficult to optimize ALD coating strategies. Further, like most active materials, a coating layer can undergo volume change during the intercalation process, which can produce detrimental structural changes and mechanical failure of the layer. In this work, first-principles calculations are conducted to reveal the behavior of a coating layer on an active material particle …


Development & Validation Of A Piv System For Obtaining Data From A Uasb Reactor, Camila D' Bastiani, Gerald Gallagher, David Kennedy, Anthony Reynolds Apr 2022

Development & Validation Of A Piv System For Obtaining Data From A Uasb Reactor, Camila D' Bastiani, Gerald Gallagher, David Kennedy, Anthony Reynolds

Conference Papers

Anaerobic digestion processes can generate energy in the form of biogas while treating organic wastewater. The efficiency of the treatment, and thus the generation of biogas, is closely linked to the type and design of the reactor, and the technology used. Granular anaerobic digestion technology offers advantages such as a higher loading rate and reduction of the space needed. However, the hydrodynamics inside this type of reactor can be complex due to the presence of solids (granules) and gas (biogas) phases along with the liquid phase (wastewater). This is one of the reasons why the study and optimization of reactors …


Decellularized Articular Cartilage Microgels As Microcarriers For Expansion Of Mesenchymal Stem Cells, Esmaiel Jabbari, Azadeh Sepahvandi Feb 2022

Decellularized Articular Cartilage Microgels As Microcarriers For Expansion Of Mesenchymal Stem Cells, Esmaiel Jabbari, Azadeh Sepahvandi

Faculty Publications

Conventional microcarriers used for expansion of human mesenchymal stem cells (hMSCs) require detachment and separation of the cells from the carrier prior to use in clinical applications for regeneration of articular cartilage, and the carrier can cause undesirable phenotypic changes in the expanded cells. This work describes a novel approach to expand hMSCs on biomimetic carriers based on adult or fetal decellularized bovine articular cartilage that supports tissue regeneration without the need to detach the expanded cells from the carrier. In this approach, the fetal or adult bovine articular cartilage was minced, decellularized, freeze-dried, ground, and sieved to produce articular …


Mass Advection–Diffusion In Creeping Flow Through An Orifice Plate: A Model For Nanoporous Atomically Thin Membranes, Harpreet Atwal, Anika Wong, Michael Boutilier Feb 2022

Mass Advection–Diffusion In Creeping Flow Through An Orifice Plate: A Model For Nanoporous Atomically Thin Membranes, Harpreet Atwal, Anika Wong, Michael Boutilier

Chemical and Biochemical Engineering Publications

Continuum transport equations are commonly applied to nanopores in atomically thin membranes for simple modeling. Although these equations do not apply for nanopores approaching the fluid or solute molecule size, they can be reasonably accurate for larger nanopores. Relatively large graphene nanopores have applications in small particle filtration and appear as unwanted defects in large-area membranes. Solute transport rates through these nanopores determine the rejection performance of the membrane. Atomically thin membranes commonly operate in a regime where advection and diffusion both contribute appreciably to transport. Solute mass transfer rates through larger nanopores have previously been modeled by adding continuum …


Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Dec 2021

Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The spectral radiative heat flux could impact the material response. In order to evaluate it, a coupling scheme between KATS - MR and P1 approximation model of radiation transfer equation (RTE) is constructed and used. A Band model is developed that divides the spectral domain into small bands of unequal widths. Two verification studies are conducted: one by comparing the simulation computed by the Band model with pure conduction results and the other by comparing with similar models of RTE. The comparative results from the verification studies indicate that the Band model is computationally efficient and can be used to …


Experimental Heat Transfer Investigations Of A Double Pipe U-Tube Heat Exchanger Equipped With Twisted Tape And Cut Twisted Tape Internals, Raj Kumar Nayak Maloth, Glen Cletus Dsouza, Swarna Mayee Patra Nov 2021

Experimental Heat Transfer Investigations Of A Double Pipe U-Tube Heat Exchanger Equipped With Twisted Tape And Cut Twisted Tape Internals, Raj Kumar Nayak Maloth, Glen Cletus Dsouza, Swarna Mayee Patra

Mechanical and Materials Engineering Publications

For several decades, the use of heat exchangers for both heating and cooling applications has been established in industries ranging from process to space heating. Out of the various types of heat exchangers, U-tube heat exchangers are preferred owing to their abilities to handle larger flowrates and their simplicity in construction. U-tube exchangers are often equipped with innards of various forms which facilitate higher heat transfer rates and thermal efficiencies. Although higher heat transfer rates have been established with the addition of internals, there is a lack of coherence on the underlying complex physical phenomena such as heat transfer boundary …


Fischer–Tropsch Synthesis: Effect Of The Promoter’S Ionic Charge And Valence Level Energy On Activity, Mirtha Z. Leguizamón León Ribeiro, Joice C. Souza, Muthu Kumaran Gnanamani, Michela Martinelli, Gabriel F. Upton, Gary Jacobs, Mauro C. Ribeiro Oct 2021

Fischer–Tropsch Synthesis: Effect Of The Promoter’S Ionic Charge And Valence Level Energy On Activity, Mirtha Z. Leguizamón León Ribeiro, Joice C. Souza, Muthu Kumaran Gnanamani, Michela Martinelli, Gabriel F. Upton, Gary Jacobs, Mauro C. Ribeiro

Center for Applied Energy Research Faculty and Staff Publications

In this contribution, we examine the effect of the promoter´s ionic charge and valence orbital energy on the catalytic activity of Fe-based catalysts, based on in situ synchrotron X-ray powder diffraction (SXRPD), temperature-programmed-based techniques (TPR, TPD, CO-TP carburization), and Fischer–Tropsch synthesis catalytic testing studies. We compared the promoting effects of K (a known promoter for longer-chained products) with Ba, which has a similar ionic radius but has double the ionic charge. Despite being partially “buried” in a crystalline BaCO3 phase, the carburization of the Ba-promoted catalyst was more effective than that of K; this was primarily due to its …


Mechanical Properties And Characterization Of Epoxy Composites Containing Highly Entangled As-Received And Acid Treated Carbon Nanotubes, Aaron Krieg, Julia A. King, Gregory M. Odegard, Timothy Leftwich, Leif K. Odegard, Paul D. Fraley, Ibrahim Miskioglu, Claire Jolowsky, Matthew Lundblad, Jin Gyu Park, Richard Liang Sep 2021

Mechanical Properties And Characterization Of Epoxy Composites Containing Highly Entangled As-Received And Acid Treated Carbon Nanotubes, Aaron Krieg, Julia A. King, Gregory M. Odegard, Timothy Leftwich, Leif K. Odegard, Paul D. Fraley, Ibrahim Miskioglu, Claire Jolowsky, Matthew Lundblad, Jin Gyu Park, Richard Liang

Michigan Tech Publications

Huntsman–Merrimack MIRALON® carbon nanotubes (CNTs) are a novel, highly entan-gled, commercially available, and scalable format of nanotubes. As-received and acid-treated CNTs were added to aerospace grade epoxy (CYCOM® 977-3), and the composites were characterized. The epoxy resin is expected to infiltrate the network of the CNTs and could improve mechanical properties. Epoxy composites were tested for flexural and viscoelastic properties and the as-re-ceived and acid treated CNTs were characterized using Field-Emission Scanning and Transmission Electron Microscopy, X-Ray Photoelectron Spectroscopy, and Thermogravimetric Analysis. Composites containing 0.4 wt% as-received CNTs showed an increase in flexural strength, from 136.9 MPa for neat epoxy …


Metasurface Cloaks To Decouple Closely Spaced Printed Dipole Antenna Arrays Fed By A Microstrip-To-Balanced Transmission-Line Transition, Doojin Lee, Alexander B. Yakovlev Sep 2021

Metasurface Cloaks To Decouple Closely Spaced Printed Dipole Antenna Arrays Fed By A Microstrip-To-Balanced Transmission-Line Transition, Doojin Lee, Alexander B. Yakovlev

Faculty and Student Publications

In this work, we present a numerical study of 1D and 2D closely spaced antenna arrays of microstrip dipole antennas covered by a metasurface in order to properly cloak and decouple the antenna arrays operating at neighboring frequencies. We show that the two strongly coupled arrays fed by a microstrip-to-balanced transmission-line transition are effectively decoupled in 1D and 2D array scenarios by covering the dipole antenna elements with an elliptically shaped metasurface. The metasurface comprises sub-wavelength periodic metallic strips printed on an elliptically shaped dielectric cover around the dipole antennas and integrated with the substrate. We present a practical design …


Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Jul 2021

Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The radiative transfer equation (RTE) is strongly coupled to the material response code KATS. A P-1 approximation model of RTE is used to account for radiation heat transfer within the material. First, the verification of the RTE model is performed by comparing the numerical and analytical solutions. Next, the coupling scheme is validated by comparing the temperature profiles of pure conduction and conduction coupled with radiative emission. The validation study is conducted on Marschall et al. cases (radiant heating, arc-jet heating, and space shuttle entry), 3D Block, 2D IsoQ sample, and Stardust Return Capsule. The validation results agree well for …


Kinetics Of Photolysis And Photocatalytic Oxidation Of Ammonium Sulfite For Hydrogen Production, Moustafa A. Soliman, Maryam Zakaria Jan 2021

Kinetics Of Photolysis And Photocatalytic Oxidation Of Ammonium Sulfite For Hydrogen Production, Moustafa A. Soliman, Maryam Zakaria

Chemical Engineering

The production of hydrogen via photocatalytic water splitting is one of the most promising technologies for obtaining chemical energy from direct solar energy while maintaining the least possible waste and pollutants. In this paper, we obtain the kinetic parameters necessary for the design of a photoreactor for photolysis and photocatalysis of ammonium sulfite solution. For the case of photolysis, we obtain the kinetics for the effect of changing the pH on the produced amount of hydrogen. For the case of photocatalysis, the intrinsic kinetic parameters of photocatalysis of water splitting reaction of ammonium sulfite and water in the presence of …


Analysis Of A Solar Hybrid Sulfur Ammonia Copper Oxide Thermochemical Cycle For Hydrogen Production, Moustafa A. Soliman, Abdel Moniem Abomosalam, Noran Shedid, Mohamed Othman, Toka Hatem, Marc Samer Jan 2021

Analysis Of A Solar Hybrid Sulfur Ammonia Copper Oxide Thermochemical Cycle For Hydrogen Production, Moustafa A. Soliman, Abdel Moniem Abomosalam, Noran Shedid, Mohamed Othman, Toka Hatem, Marc Samer

Chemical Engineering

Solar energy conversion to hydrogen by water splitting is a promising technique because it is sustainable and environmentally friendly. One option for water splitting is through thermochemical cycles in which one of the steps is electrolytic or photocatalytic. In this paper, the economics of a thermochemical process that combines photocatalysis, photovoltaics, high temperature thermal energy and energy storage to harvest solar energy is assessed. This paper focuses on the standard hybrid sulfur ammonia thermochemical cycle (SA) in which the electrolytic step of the hydrogen production from ammonium sulfite solution is augmented by a photocatalytic step. Trying to make use of …


A Geometric Description Of The Set Of Stabilizing Pid Controllers, Keqin Gu, Qian Ma, Huiqing Zhou, Mahzoon Salma, Xingzi Yang Jan 2021

A Geometric Description Of The Set Of Stabilizing Pid Controllers, Keqin Gu, Qian Ma, Huiqing Zhou, Mahzoon Salma, Xingzi Yang

SIUE Faculty Research, Scholarship, and Creative Activity

This article developed a new method to described the set of stabilizing PID control. The method is based on D-parameterization with natural description of the set. It was found that the stability crossing surface is a ruled surface that is completely determined by a curve known as discriminant. The discriminant is divided into sectors at the cusps. Corresponding to the sectors, the stability crossing surface is divided into positive and negative patches. A systematic study is conducted to identify the regions with a fixed number of right half-plane characteristic roots. The crossing directions of characteristic roots for positive patches and …


Pore Microstructure Impacts On Lithium Ion Transport And Rate Capability Of Thick Sintered Electrodes, Ziyang Nie, Rohan Parai, Chen Cai, Charles Michaelis, Jacob M. Lamanna, Daniel S. Hussey, David L. Jacobson, Dipankar Ghosh, Gary M. Koenig Jr. Jan 2021

Pore Microstructure Impacts On Lithium Ion Transport And Rate Capability Of Thick Sintered Electrodes, Ziyang Nie, Rohan Parai, Chen Cai, Charles Michaelis, Jacob M. Lamanna, Daniel S. Hussey, David L. Jacobson, Dipankar Ghosh, Gary M. Koenig Jr.

Mechanical & Aerospace Engineering Faculty Publications

Increasing electrode thickness is one route to improve the energy density of lithium-ion battery cells. However, restricted Li+ transport in the electrolyte phase through the porous microstructure of thick electrodes limits the ability to achieve high current densities and rates of charge/discharge with these high energy cells. In this work, processing routes to mitigate transport restrictions were pursued. The electrodes used were comprised of only active material sintered together into a porous pellet. For one of the electrodes, comparisons were done between using ice-templating to provide directional porosity and using sacrificial particles during processing to match the geometric density …


Wetting-Driven Formation Of Present-Day Loess Structure, Yanrong Li, Weiwei Zhang, Shengdi He, Adnan Aydin Nov 2020

Wetting-Driven Formation Of Present-Day Loess Structure, Yanrong Li, Weiwei Zhang, Shengdi He, Adnan Aydin

Faculty and Student Publications

© 2020 The Authors Present-day loess, especially Malan loess formed in Later Quaternary, has a characteristic structure composed of vertically aligned strong units and weak segments. Hypotheses describing how this structure forms inside original loess deposits commonly relate it to wetting-drying process. We tested this causal relationship by conducting unique experiments on synthetic samples of initial loess deposits fabricated by free-fall of loess particles. These samples were subjected to a wetting-drying cycle, and their structural evolutions were documented by close-up photography and CT scanning. Analysis of these records revealed three key stages of structural evolution: initiation (evenly distributed cracks appear …


A Mathematical Framework For Estimating Risk Of Airborne Transmission Of Covid-19 With Application To Face Mask Use And Social Distancing, Rajat Mittal, Charles Meneveau, Wen Wu Oct 2020

A Mathematical Framework For Estimating Risk Of Airborne Transmission Of Covid-19 With Application To Face Mask Use And Social Distancing, Rajat Mittal, Charles Meneveau, Wen Wu

Faculty and Student Publications

© 2020 Author(s). A mathematical model for estimating the risk of airborne transmission of a respiratory infection such as COVID-19 is presented. The model employs basic concepts from fluid dynamics and incorporates the known scope of factors involved in the airborne transmission of such diseases. Simplicity in the mathematical form of the model is by design so that it can serve not only as a common basis for scientific inquiry across disciplinary boundaries but it can also be understandable by a broad audience outside science and academia. The caveats and limitations of the model are discussed in detail. The model …


What Difference Does A Catalyst Make?, Tammy Guthrie, Mike Jackson, Holly Haney Jul 2020

What Difference Does A Catalyst Make?, Tammy Guthrie, Mike Jackson, Holly Haney

High School Lesson Plans

Students will use different catalysts for the decomposition of Hydrogen Peroxide, to determine if different catalysts affect the energy that is generated during the reaction.


The Use Of Succinonitrile As An Electrolyte Additive For Composite-Fiber Membranes In Lithium-Ion Batteries, Jahaziel Villarreal, Roberto Orrostieta Chavez, Sujay A. Chopade, Timothy P. Lodge, Mataz Alcoutlabi Mar 2020

The Use Of Succinonitrile As An Electrolyte Additive For Composite-Fiber Membranes In Lithium-Ion Batteries, Jahaziel Villarreal, Roberto Orrostieta Chavez, Sujay A. Chopade, Timothy P. Lodge, Mataz Alcoutlabi

Mechanical Engineering Faculty Publications and Presentations

In the present work, the effect of temperature and additives on the ionic conductivity of mixed organic/ionic liquid electrolytes (MOILEs) was investigated by conducting galvanostatic charge/discharge and ionic conductivity experiments. The mixed electrolyte is based on the ionic liquid (IL) (EMI/TFSI/LiTFSI) and organic solvents EC/DMC (1:1 v/v). The effect of electrolyte type on the electrochemical performance of a LiCoO2 cathode and a SnO2/C composite anode in lithium anode (or cathode) half-cells was also investigated. The results demonstrated that the addition of 5 wt.% succinonitrile (SN) resulted in enhanced ionic conductivity of a 60% EMI-TFSI 40% EC/DMC MOILE …


Three-Phase Hydrodynamic Simulation And Experimental Validation Of An Upflow Anaerobic Sludge Blanket Reactor, Camila D' Bastiani, Jéferson Luis Alba, Gabriel Tomazzoni Mazzarotto, Severino Rodrigues De Farias Neto, Anthony Reynolds, David Kennedy, Lademir Luiz Beal Mar 2020

Three-Phase Hydrodynamic Simulation And Experimental Validation Of An Upflow Anaerobic Sludge Blanket Reactor, Camila D' Bastiani, Jéferson Luis Alba, Gabriel Tomazzoni Mazzarotto, Severino Rodrigues De Farias Neto, Anthony Reynolds, David Kennedy, Lademir Luiz Beal

Articles

This research focuses on performing multiphase solid/liquid/gas CFD simulations of a UASB reactor in order to obtain a validated model that provides a clearer understanding of the hydrodynamic behaviour of the three phases in UASB reactors. Eulerian–Eulerian, laminar, three-dimensional, multiphase simulations are carried out using Fluent 16.2. The liquid phase velocity and flow profile are validated through PIV experiments. A liquid mean velocity difference of 8.45% is found between the experimental and numerical results, thus validating the CFD model. Shadowgraphy is applied successfully to validate the biogas phase velocity and bubble size. Based on the hydrodynamic analysis results, the reactor …