Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

2010

Alternative fuels

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Compatibility Of Elastomers In Palm Biodiesel Oct 2010

Compatibility Of Elastomers In Palm Biodiesel

A.S. Md Abdul Haseeb

In recent time, environmental awareness and concern over the rapid exhaustion of fossil fuels have led to an increased popularity of biodiesel as an alternative fuel for automobiles. However, there are concerns over enhanced degradation of automotive materials in biodiesel. The present study aims to investigate the impact of palm biodiesel on the degradation behavior of elastomers such as nitrile rubber (NBR), polychloroprene, and fluoro-viton A. Static immersion tests in B0 (diesel), B10 (10% biodiesel in diesel), B100 (biodiesel) were carried out at room temperature (25 °C) and at 50 °C for 500 h. At the end of immersion test, …


Corrosion Characteristics Of Copper And Leaded Bronze In Palm Biodiesel Mar 2010

Corrosion Characteristics Of Copper And Leaded Bronze In Palm Biodiesel

A.S. Md Abdul Haseeb

Biodiesel has become more attractive as alternative fuel for automobiles because of its environmental benefits and the fact that it is made from renewable sources. However, corrosion of metals in biodiesel is one of the concerns related to biodiesel compatibility issues. This study aims to characterize the corrosion behavior of commercial pure copper and leaded bronze commonly encountered in the automotive fuel system in diesel engine. Static immersion tests in B0, B50 and B100 fuels were carried out at room temperature for 2640 h. Similar immersion tests in B0, B100 and B100 (oxidized) fuels were also conducted at 60 °C …


Effect Of Temperature On Tribological Properties Of Palm Biodiesel Mar 2010

Effect Of Temperature On Tribological Properties Of Palm Biodiesel

A.S. Md Abdul Haseeb

Biodiesel, as an alternative fuel is steadily gaining attention to replace petroleum diesel partially or completely. The tribological performance of biodiesel is crucial for its application in automobiles. In the present study, effect of temperature on the tribological performance of palm biodiesel was investigated by using four ball wear machine. Tests were conducted at temperatures 30, 45, 60 and 75 °C, under a normal load of 40 kg for 1 h at speed 1200 rpm. For each temperature, the tribological properties of petroleum diesel (B0) and three biodiesel blends like B10, B20, B50 were investigated and compared. During the wear …