Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

2010

Iowa State University

Discipline
Keyword
Publication

Articles 1 - 12 of 12

Full-Text Articles in Mechanical Engineering

Do Surfaces With Mixed Hydrophilic And Hydrophobic Areas Enhance Pool Boiling?, Amy Rachel Betz, Jie Xu, Huihe Qiu, Daniel Attinger Oct 2010

Do Surfaces With Mixed Hydrophilic And Hydrophobic Areas Enhance Pool Boiling?, Amy Rachel Betz, Jie Xu, Huihe Qiu, Daniel Attinger

Daniel Attinger

We demonstrate that smooth and flat surfaces combining hydrophilic and hydrophobicpatterns improve pool boiling performance. Compared to a hydrophilicsurface with 7° wetting angle, the measured critical heat flux and heat transfer coefficients of the enhanced surfaces are, up to respectively, 65% and 100% higher. Different networks combining hydrophilic and hydrophobic regions are characterized. While all tested networks enhance the heat transfer coefficient, large enhancements of critical heat flux are typically found for hydrophilic networks featuring hydrophobic islands. Hydrophilic networks indeed are shown to prevent the formation of an insulating vapor layer.


Use Of A Porous Membrane For Gas Bubble Removal In Microfluidic Channels: Physical Mechanisms And Design Criteria, Jie Xu, Regis Vaillant, Daniel Attinger Oct 2010

Use Of A Porous Membrane For Gas Bubble Removal In Microfluidic Channels: Physical Mechanisms And Design Criteria, Jie Xu, Regis Vaillant, Daniel Attinger

Daniel Attinger

We demonstrate and explain a simple and efficient way to remove gas bubbles from liquid-filled microchannels, by integrating a hydrophobic porous membrane on top of the microchannel. A prototype chip is manufactured in hard, transparent polymer with the ability to completely filter gas plugs out of a segmented flow at rates up to 7.4 μl/s/mm2 of membrane area. The device involves a bubble generation section and a gas removal section. In the bubble generation section, a T-junction is used to generate a train of gas plugs into a water stream. These gas plugs are then transported toward the gas removal …


Can Segmented Flow Enhance Heat Transfer In Microchannel Heat Sinks?, Amy Rachel Betz, Daniel Attinger Sep 2010

Can Segmented Flow Enhance Heat Transfer In Microchannel Heat Sinks?, Amy Rachel Betz, Daniel Attinger

Daniel Attinger

Liquid cooling is an efficient way to remove heat fluxes with magnitudes up to 10,000 W/cm2. One limitation of current single-phase microchannel heat sinks is the relatively low Nusselt number, due to laminar flow. In this work, we experimentally investigate how to enhance the Nusselt number with the introduction of segmented flow. The segmented flow pattern was created by the periodic injection of air bubbles through a T-junction into water-filled channels. We designed a polycarbonate heat sink consisting of an array of seven parallel microchannels each with a square cross-section 500 μm wide. We show that segmented flow increases the …


Interfacial Temperature Measurements, High-Speed Visualization And Finite-Element Simulations Of Droplet Impact And Evaporation On A Solid Surface, Rajneesh Bhardwaj, Jon P. Longtin, Daniel Attinger Sep 2010

Interfacial Temperature Measurements, High-Speed Visualization And Finite-Element Simulations Of Droplet Impact And Evaporation On A Solid Surface, Rajneesh Bhardwaj, Jon P. Longtin, Daniel Attinger

Daniel Attinger

The objective of this work is to investigate the coupling of fluid dynamics, heat transfer and mass transfer during the impact and evaporation of droplets on a heated solid substrate. A laser-based thermoreflectance method is used to measure the temperature at the solid–liquid interface, with a time and space resolution of 100 μs and 20 μm, respectively. Isopropanol droplets with micro- and nanoliter volumes are considered. A finite-element model is used to simulate the transient fluid dynamics and heat transfer during the droplet deposition process, considering the dynamics of wetting as well as Laplace and Marangoni stresses on the liquid–gas …


A Generalized Finite Element Formulation For Arbitrary Basis Functions: From Isogeometric Analysis To Xfem, D. J. Benson, Y. Bazilevs, E. Deluycker, Ming-Chen Hsu, M. Scott, T. J. R. Hughes, T. Belytschko Aug 2010

A Generalized Finite Element Formulation For Arbitrary Basis Functions: From Isogeometric Analysis To Xfem, D. J. Benson, Y. Bazilevs, E. Deluycker, Ming-Chen Hsu, M. Scott, T. J. R. Hughes, T. Belytschko

Ming-Chen Hsu

Many of the formulations of current research interest, including iosogeometric methods and the extended finite element method, use nontraditional basis functions. Some, such as subdivision surfaces, may not have convenient analytical representations. The concept of an element, if appropriate at all, no longer coincides with the traditional definition. Developing a new software for each new class of basis functions is a large research burden, especially, if the problems involve large deformations, non-linear materials, and contact. The objective of this paper is to present a method that separates as much as possible the generation and evaluation of the basis functions from …


Computational Vascular Fluid–Structure Interaction: Methodology And Application To Cerebral Aneurysms, Y. Bazilevs, Ming-Chen Hsu, Y. Zhang, Z. Wang, T. Kvamsdal, S. Hentschel, J. G. Isaksen Aug 2010

Computational Vascular Fluid–Structure Interaction: Methodology And Application To Cerebral Aneurysms, Y. Bazilevs, Ming-Chen Hsu, Y. Zhang, Z. Wang, T. Kvamsdal, S. Hentschel, J. G. Isaksen

Ming-Chen Hsu

A computational vascular fluid–structure interaction framework for the simulation of patient-specific cerebral aneurysm configurations is presented. A new approach for the computation of the blood vessel tissue prestress is also described. Simulations of four patient-specific models are carried out, and quantities of hemodynamic interest such as wall shear stress and wall tension are studied to examine the relevance of fluid–structure interaction modeling when compared to the rigid arterial wall assumption. We demonstrate that flexible wall modeling plays an important role in accurate prediction of patient-specific hemodynamics. Discussion of the clinical relevance of our methods and results is provided.


The Bending Strip Method For Isogeometric Analysis Of Kirchhoff–Love Shell Structures Comprised Of Multiple Patches, J. Kiendel, Y. Bazilevs, Ming-Chen Hsu, R. Wuchner, K. U. Bletzigner Aug 2010

The Bending Strip Method For Isogeometric Analysis Of Kirchhoff–Love Shell Structures Comprised Of Multiple Patches, J. Kiendel, Y. Bazilevs, Ming-Chen Hsu, R. Wuchner, K. U. Bletzigner

Ming-Chen Hsu

In this paper we present an isogeometric formulation for rotation-free thin shell analysis of structures comprised of multiple patches. The structural patches are C1- or higher-order continuous in the interior, and are joined with C0-continuity. The Kirchhoff–Love shell theory that relies on higher-order continuity of the basis functions is employed in the patch interior as presented in Kiendl et al. [36]. For the treatment of patch boundaries, a method is developed in which strips of fictitious material with unidirectional bending stiffness and zero membrane stiffness are added at patch interfaces. The direction of bending stiffness is chosen to be transverse …


Self-Assembly Of Colloidal Particles From Evaporating Droplets: Role Of Dlvo Interactions And Proposition Of A Phase Diagram, Rajneesh Bhardwaj, Xiaohua Fang, Ponisseril Somasundaran, Daniel Attinger Mar 2010

Self-Assembly Of Colloidal Particles From Evaporating Droplets: Role Of Dlvo Interactions And Proposition Of A Phase Diagram, Rajneesh Bhardwaj, Xiaohua Fang, Ponisseril Somasundaran, Daniel Attinger

Daniel Attinger

The shape of deposits obtained from drying drops containing colloidal particles matters for technologies such as inkjet printing, microelectronics, and bioassay manufacturing. In this work, the formation of deposits during the drying of nanoliter drops containing colloidal particles is investigated experimentally with microscopy and profilometry, and theoretically with an in-house finite-element code. The system studied involves aqueous drops containing titania nanoparticles evaporating on a glass substrate. Deposit shapes from spotted drops at different pH values are measured using a laser profilometer. Our results show that the pH of the solution influences the dried deposit pattern, which can be ring-like or …


A Microflow Cytometer On A Chip, Joel P. Golden, Jason Kim, George P. Anderson, Nicole N. Hashemi, Peter J. Howell, Frances S. Ligler Feb 2010

A Microflow Cytometer On A Chip, Joel P. Golden, Jason Kim, George P. Anderson, Nicole N. Hashemi, Peter J. Howell, Frances S. Ligler

Nastaran Hashemi

A rapid, automated, multi-analyte Microflow Cytometer is being developed as a portable, field-deployable sensor for onsite diagnosis of biothreat agent exposure and environmental monitoring. The technology relies on a unique method for ensheathing a sample stream in continuous flow past an interrogation region where optical fibers provide excitation and collect emission. This approach efficiently focuses particles in the interrogation region of the fluidic channel, avoids clogging and provides for subsequent separation of the core and sheath fluids in order to capture the target for confirmatory assays and recycling of the sheath fluid. Fluorescently coded microspheres provide the capability for highly …


Improving Stability Of Stabilized And Multiscale Formulations In Flow Simulations At Small Time Steps, Ming-Chen Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, T.J.R. Hughes Feb 2010

Improving Stability Of Stabilized And Multiscale Formulations In Flow Simulations At Small Time Steps, Ming-Chen Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, T.J.R. Hughes

Ming-Chen Hsu

The objective of this paper is to show that use of the element-vector-based definition of stabilization parameters, introduced in [T.E. Tezduyar, Computation of moving boundaries and interfaces and stabilization parameters, Int. J. Numer. Methods Fluids 43 (2003) 555–575; T.E. Tezduyar, Y. Osawa, Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Engrg. 190 (2000) 411–430], circumvents the well-known instability associated with conventional stabilized formulations at small time steps. We describe formulations for linear advection–diffusion and incompressible Navier–Stokes equations and test them on three benchmark problems: advection of an L-shaped discontinuity, laminar flow in a square …


Isogeometric Shell Analysis: The Reissner–Mindlin Shell, D. J. Benson, Y. Bazilevs, Ming-Chen Hsu, T.J.R. Hughes Jan 2010

Isogeometric Shell Analysis: The Reissner–Mindlin Shell, D. J. Benson, Y. Bazilevs, Ming-Chen Hsu, T.J.R. Hughes

Ming-Chen Hsu

A Reissner–Mindlin shell formulation based on a degenerated solid is implemented for NURBS-based isogeometric analysis. The performance of the approach is examined on a set of linear elastic and nonlinear elasto-plastic benchmark examples. The analyses were performed with LS-DYNA, an industrial, general-purpose finite element code, for which a user-defined shell element capability was implemented. This new feature, to be reported on in subsequent work, allows for the use of NURBS and other non-standard discretizations in a sophisticated nonlinear analysis framework.


Dynamic Reversibility Of Hydrodynamic Focusing For Recycling Sheath Fluid, Nicole N. Hashemi, Peter B. Howell Jr., Jeffrey S. Erickson, Joel P. Golden, Francis S. Ligler Jan 2010

Dynamic Reversibility Of Hydrodynamic Focusing For Recycling Sheath Fluid, Nicole N. Hashemi, Peter B. Howell Jr., Jeffrey S. Erickson, Joel P. Golden, Francis S. Ligler

Nastaran Hashemi

The phenomenon of "unmixing" has been demonstrated in microfluidic mixers, but here we manipulate laminar flow streams back to their original positions in order to extend the operational utility of an analytical device where no mixing is desired. Using grooves in the channel wall, we passively focus a sample stream with two sheath streams to center it in a microchannel for optical analysis. Even though the sample stream is completely surrounded by sheath fluid, reversing the orientation of the grooves in the channel walls returns the sample stream to its original position with respect to the sheath streams. We demonstrate …