Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

SelectedWorks

Iron alloys

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Compatibility Of Automotive Materials In Biodiesel: A Review Mar 2011

Compatibility Of Automotive Materials In Biodiesel: A Review

A.S. Md Abdul Haseeb

Use of biodiesel in automobile can significantly reduce our dependence of fossil fuel and help reduce environmental pollution. However, there are concerns over the compatibility of currently used automotive materials in biodiesel. A few automobile manufacturers extended their warranty only to lower blends of biodiesel (e.g. B5). Higher blends (e.g. B50 or B100) are still not covered by warranty. In automobile fuel system, metallic materials like ferrous alloy and non-ferrous alloys, and elastomers come in contact with fuel. Biodiesel, having different chemical characteristics from diesel, can interact with materials in a different way. It can cause corrosive and tribological attack …


On The Nature Of The Electrochemically Synthesized Hard Fe-0.96 Mass Pct C Alloy Film Dec 2002

On The Nature Of The Electrochemically Synthesized Hard Fe-0.96 Mass Pct C Alloy Film

A.S. Md Abdul Haseeb

A hard Fe-0.96 mass pet C alloy with a hardness value of 810 HV has been electrochemically synthesized from a ferrous sulfate bath containing a small amount of citric acid and L-ascorbic acid. The nature of the alloy has been investigated by a number of techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Mössbauer spectroscopy, differential scanning calorimetry (DSC), and magnetic measurements. The decomposition behavior of the alloy is also studied and compared with that of thermally prepared martensite. It has been found that the electrochemically deposited Fe-C alloy exists in …


Mössbauer Investigation On Electrodeposited Fe-C And Fe-Ni-C Alloys Jan 2001

Mössbauer Investigation On Electrodeposited Fe-C And Fe-Ni-C Alloys

A.S. Md Abdul Haseeb

Hard Fe-C based alloys, Fe-0.96 mass% C and Fe-15.4 mass% C having a microhardness of 810 and 750 HV, respectively, are electrodeposited from sulfate-based baths at 50°C. The Mössbauer spectra consist of high intensity sextet due to ferromagnetic Fe. The linewidth of the sextet is larger for alloys than for the pure Fe, indicating an increased effective field at different Fe sites in the alloys. Absence of any low intensity sextet, which is attributable to the Fe atoms close to the C atoms at the octahedral c-axis position, suggests that the electrodeposited alloys are in an advanced state of aging. …