Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

Modeling The Mechanical Behavior And Shock Propagation Of Metallic And Nanocomposite Materials, Pouya Shojaeishahmirzadi Dec 2021

Modeling The Mechanical Behavior And Shock Propagation Of Metallic And Nanocomposite Materials, Pouya Shojaeishahmirzadi

UNLV Theses, Dissertations, Professional Papers, and Capstones

Evaluating the materials properties under different loading conditions is critical in various industries. Compared to quasi-static loading, predicting the behavior of structures under dynamic loads is more challenging. In this work, we will address multiple problems with strain rates varying from quasi-static to hypervelocity conditions. Computer simulation is increasingly used in the design and evaluation phases to improve the efficiency, cost-effectiveness, and flexibility. However, verification and validation of each simulation is necessary. Experiments are performed in all topics and the computational models are validated by comparing with the experiments. One of the most common types of connections in structures is …


Computational Sodium Heat Pipe Simulation In Three Dimensions For Transient Nuclear Reactor Analysis With Variable Surface Heat Flux, Valerie Jean Lawdensky Dec 2021

Computational Sodium Heat Pipe Simulation In Three Dimensions For Transient Nuclear Reactor Analysis With Variable Surface Heat Flux, Valerie Jean Lawdensky

UNLV Theses, Dissertations, Professional Papers, and Capstones

Heat pipes are used to transfer heat through phase change in a liquid/vapor contained in a metal tube. They are passive devices that require no pumps to circulate the fluid and can transfer heat far more efficiently than a solid copper rod of the same diameter. They are commonly used in laptop computers where copper heat pipes filled with water take heat away from the CPU and transfer the heat to air through a heat exchanger. Heat pipes were also used in the Kilopower nuclear reactor where higher temperatures required sodium as the working fluid with stainless steel tubes. Computer …


Polyvinyl Chloride Gels: Theoretical Modeling Of Their Actuation Mechanism And Characterization Of Their Properties, Zachary Frank Dec 2021

Polyvinyl Chloride Gels: Theoretical Modeling Of Their Actuation Mechanism And Characterization Of Their Properties, Zachary Frank

UNLV Theses, Dissertations, Professional Papers, and Capstones

Polyvinyl chloride (PVC) gels are an electroactive polymer smart material which has been considered in a variety of actuator applications. Their large deformation, fast response rates, optical transparency, and soft nature has made them a key area of interest in fields ranging from soft robotics to optics. PVC gels are made from PVC mixed with large quantities of plasticizer, such as dibutyl adipate (DBA). When a voltage is applied, the gel experiences an “anodophilic” deformation (in which it moves preferentially towards the anode). This unique characteristic is the result of a charge buildup near the anode surface, which creates electromechanical …


Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi May 2021

Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi

UNLV Theses, Dissertations, Professional Papers, and Capstones

This research addressed the amount of electric power required to induce specific changes in lift force using a NACA 2127 airfoil with a chord length of ~28 mm, connected to a micro load cell, in a wind tunnel of 103 square centimeter cross-section. A DBD plasma actuator supplied by a ZVS driven high voltage pulsed DC circuit, operating at a frequency of 17.4 kHz, was utilized for voltages of up to 5000 V. Two configurations of electrode gapping were compared to determine the efficient use of power. The configuration with a gap of ~1 mm between the upstream and downstream …


Healthy Aging In Place: An Integrated Smart Home Using Alexa-Compatible Technology, Tyler Kryst May 2021

Healthy Aging In Place: An Integrated Smart Home Using Alexa-Compatible Technology, Tyler Kryst

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this research was to address current healthcare concerns among the aging population. Around the globe, the average life expectancy is projected to continue increasing resulting in a higher prevalence of age-related disease. With the ever-increasing capabilities of modern technology, it is necessary to apply this technology to increase the health and safety of older adults. This work had three objectives. The first objective was the establishment of an integrated smart home aimed at creating a healthy aging-in-place environment through the use of Alexa. The second objective was the development and integration of a completely custom health device …


Patient-Specific Finite Element Analysis For Mandibular Fracture Fixation, Ethan Snyder May 2021

Patient-Specific Finite Element Analysis For Mandibular Fracture Fixation, Ethan Snyder

UNLV Theses, Dissertations, Professional Papers, and Capstones

This thesis proposes an approach for Finite Element Analysis (FEA) of mandibular fracture fixation. Using a Computerized Tomography (CT) scan of mandible obtained from a specific person, the material characteristics, density and modulus of elasticity, were determined from a set of discrete points within the mandible that are 1mm spaced based on the Hounsfield Units of these points. The mandible geometry was sectioned to simulate a fracture. Muscle and mastication forces were added to replicate post-surgery loading. Using a standard linear miniplate, this material model was compared with two commonly used mandibular cortical shell bone models: isotropic and orthotropic. A …


A Hyperelastic Porous Media Framework For Ionic Polymer-Metal Composites And Characterization Of Transduction Phenomena Via Dimensional Analysis And Nonlinear Regression, Zakai J. Olsen May 2021

A Hyperelastic Porous Media Framework For Ionic Polymer-Metal Composites And Characterization Of Transduction Phenomena Via Dimensional Analysis And Nonlinear Regression, Zakai J. Olsen

UNLV Theses, Dissertations, Professional Papers, and Capstones

Ionic polymer-metal composites (IPMC) are smart materials that exhibit large deformation in response to small applied voltages, and conversely generate detectable electrical signals in response to mechanical deformations. The study of IPMC materials is a rich field of research, and an interesting intersection of material science, electrochemistry, continuum mechanics, and thermodynamics. Due to their electromechanical and mechanoelectrical transduction capabilities, IPMCs find many applications in robotics, soft robotics, artificial muscles, and biomimetics. This study aims to investigate the dominating physical phenomena that underly the actuation and sensing behavior of IPMC materials. This analysis is made possible by developing a new, hyperelastic …