Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses and Dissertations

Compliant mechanisms

2017

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Developing New Classes Of Thick-Origami-Based Mechanisms: Conceal-And-Reveal Motion And Folding Printed Circuit Boards, Bryce Parker De Figueiredo Nov 2017

Developing New Classes Of Thick-Origami-Based Mechanisms: Conceal-And-Reveal Motion And Folding Printed Circuit Boards, Bryce Parker De Figueiredo

Theses and Dissertations

Origami-adapted mechanisms form the basis of an increasing number of engineered systems. As most of these systems require the use of non-paper materials, various methods for accommodating thickness have been developed. These methods have opened new avenues for origami-based design. This work introduces approaches for the design of two new classes of thick-origami systems and demonstrates the approaches in hardware. One type of system, called "conceal-and-reveal,'' is introduced, and a method of designing these mechanisms is developed. Techniques are also developed for designing folding printed circuit boards which are fabricated from a single sheet of material. This enables areas of …


Selecting Surrogate Folds For Use In Origami-Based Mechanisms And Products, Jason Tyler Allen Apr 2017

Selecting Surrogate Folds For Use In Origami-Based Mechanisms And Products, Jason Tyler Allen

Theses and Dissertations

Origami-based design is increasing in popularity as its benefits and advantages become better understood and explored. However, many opportunities still exist for the application of origami principles to engineered designs, especially in the use of non-paper, thick sheet materials. One specific area utilizing thick sheet materials that is especially promising is origami-based mechanisms that require electrical power transfer applications. Many of these opportunities can be met by the use of surrogate folds. This thesis provides methods and frameworks that can be used by engineers to efficiently select and design surrogate folds for use in origami-based mechanisms and products. Surrogate folds …