Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Stem cells

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Low-Intensity Vibration Restores Nuclear Yap Levels And Acute Yap Nuclear Shuttling In Mesenchymal Stem Cells Subjected To Simulated Microgravity, Matthew Thompson, Kali Woods, Joshua Newberg, Julia Thom Oxford, Gunes Uzer Dec 2020

Low-Intensity Vibration Restores Nuclear Yap Levels And Acute Yap Nuclear Shuttling In Mesenchymal Stem Cells Subjected To Simulated Microgravity, Matthew Thompson, Kali Woods, Joshua Newberg, Julia Thom Oxford, Gunes Uzer

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Reducing the musculoskeletal deterioration that astronauts experience in microgravity requires countermeasures that can improve the effectiveness of otherwise rigorous and time-expensive exercise regimens in space. The ability of low-intensity vibrations (LIV) to activate force-responsive signaling pathways in cells suggests LIV as a potential countermeasure to improve cell responsiveness to subsequent mechanical challenge. Mechanoresponse of mesenchymal stem cells (MSC), which maintain bone-making osteoblasts, is in part controlled by the “mechanotransducer” protein YAP (Yes-associated protein), which is shuttled into the nucleus in response to cyto-mechanical forces. Here, using YAP nuclear shuttling as a measurement outcome, we tested the effect of 72 h …


Recovery Of Stem Cell Proliferation By Low Intensity Vibration Under Simulated Microgravity Requires Linc Complex, H. Touchstone, R. Bryd, S. Loisate, M. Thompson, X. Pu, R. Beard, J. T. Oxford, G. Uzer Jan 2019

Recovery Of Stem Cell Proliferation By Low Intensity Vibration Under Simulated Microgravity Requires Linc Complex, H. Touchstone, R. Bryd, S. Loisate, M. Thompson, X. Pu, R. Beard, J. T. Oxford, G. Uzer

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Mesenchymal stem cells (MSC) rely on their ability to integrate physical and spatial signals at load bearing sites to replace and renew musculoskeletal tissues. Designed to mimic unloading experienced during spaceflight, preclinical unloading and simulated microgravity models show that alteration of gravitational loading limits proliferative activity of stem cells. Emerging evidence indicates that this loss of proliferation may be linked to loss of cellular cytoskeleton and contractility. Low intensity vibration (LIV) is an exercise mimetic that promotes proliferation and differentiation of MSCs by enhancing cell structure. Here, we asked whether application of LIV could restore the reduced proliferative capacity seen …