Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 69

Full-Text Articles in Mechanical Engineering

Comparison Of The Thermal Stability In Equal-Channel-Angular-Pressed And High-Pressure-Torsion-Processed Fe–21cr–5al Alloy, Maalavan Arivu, Andrew Hoffman, Jiaqi Duan, Jonathan Poplawsky, Xinchang Zhang, Frank W. Liou, Rinat Islamgaliev, Ruslan Valiev, Haiming Wen Jan 2023

Comparison Of The Thermal Stability In Equal-Channel-Angular-Pressed And High-Pressure-Torsion-Processed Fe–21cr–5al Alloy, Maalavan Arivu, Andrew Hoffman, Jiaqi Duan, Jonathan Poplawsky, Xinchang Zhang, Frank W. Liou, Rinat Islamgaliev, Ruslan Valiev, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Nanostructured Steels Are Expected to Have Enhanced Irradiation Tolerance and Improved Strength. However, They Suffer from Poor Microstructural Stability at Elevated Temperatures. in This Study, Fe–21Cr–5Al–0.026C (Wt%) Kanthal D (KD) Alloy Belonging to a Class of (FeCrAl) Alloys Considered for Accident-Tolerant Fuel Cladding in Light-Water Reactors is Nanostructured using Two Severe Plastic Deformation Techniques of Equal-Channel Angular Pressing (ECAP) and High-Pressure Torsion (HPT), and their Thermal Stability between 500–700 °C is Studied and Compared. ECAP KD is Found to Be Thermally Stable Up to 500 °C, Whereas HPT KD is Unstable at 500 °C. Microstructural Characterization Reveals that ECAP KD …


Microstructure, Mechanical Properties And Oxidation Behavior Of Refractory Multi-Principal Element Alloys By Laser Remelting And Conventional Manufacturing, Visharad Jalan, Seth Crawford, Sung Heng Wu, Frank W. Liou, Haiming Wen Jan 2023

Microstructure, Mechanical Properties And Oxidation Behavior Of Refractory Multi-Principal Element Alloys By Laser Remelting And Conventional Manufacturing, Visharad Jalan, Seth Crawford, Sung Heng Wu, Frank W. Liou, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Refractory Multi-Principal Element Alloys (RMPEAs), HfNbTaTiZr, (HfNbTaTiZr)9Cr, and (HfNbTaTiZr)9Al, Were Manufactured using Vacuum Arc Melting Followed by Laser Remelting to Mimic Additive Manufacturing. the Microhardness of the As-Cast HfNbTaTiZr, (HfNbTaTiZr)9Cr, and (HfNbTaTiZr)9Al Samples after Arc Melting Was Measured as 6.20, 7.63, and 6.89 Gpa, respectively. after Laser Remelting and Re-Solidification, the Hardness Increased by ~ 30% for Each Composition; the Hardest Was (HfNbTaTiZr)9Cr Measured at 9.60 GPa, While the Softest Was HfNbTaTiZr with a Hardness of 8.42 GPa, Which Was Still Harder Compared to All the Other Samples. the Addition …


Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen Oct 2022

Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing of dense SiC parts was achieved via an extrusion-based process followed by electrical-field assisted pressure-less sintering. The aim of this research was to study the effect of the rheological behavior of SiC slurry on the printing process and quality, as well as the influence of 3D printing parameters on the dimensions of the extruded filament, which are directly related to the printing precision and quality. Different solid contents and dispersant- Darvan 821A concentrations were studied to optimize the viscosity, thixotropy and sedimentation rate of the slurry. The optimal slurry was composed of 77.5 wt% SiC, Y2O3 and Al2O3 …


Improved Additive Manufacturing Of Silicon Carbide Parts Via Pressureless Electric Field-Assisted Sintering, Adam Bratten, Ruoyu Chen, Joshua Rittenhouse, Ming-Chuan Leu, Haiming Wen Sep 2022

Improved Additive Manufacturing Of Silicon Carbide Parts Via Pressureless Electric Field-Assisted Sintering, Adam Bratten, Ruoyu Chen, Joshua Rittenhouse, Ming-Chuan Leu, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

High solids loading silicon carbide (SiC)-based aqueous slurries containing only.5 wt. % organic additives were utilized to create specimens of various geometries via an extrusion-based additive manufacturing (AM) technique. Pressure less electric field-assisted sintering was performed to densify each specimen without deformation. The combination of these techniques produced parts with >98% relative density despite containing only 5 wt.% oxide sintering additives. After sintering, specimens contained only the α-SiC and yttrium aluminum perovskite phases. This suggests the evolution of a nonequilibrium yttrium aluminate phase, as well as transformation from β-SiC to α-SiC. The fabrication method presented in this work has advantages …


Polarization-Sensitive Optical Responses From Natural Layered Hydrated Sodium Sulfosalt Gerstleyite, Ravi P. N. Tripathi, Xiaodong Yang, Jie Gao Mar 2022

Polarization-Sensitive Optical Responses From Natural Layered Hydrated Sodium Sulfosalt Gerstleyite, Ravi P. N. Tripathi, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Multi-element layered materials have gained substantial attention in the context of achieving the customized light-matter interactions at subwavelength scale via stoichiometric engineering, which is crucial for the realization of miniaturized polarization-sensitive optoelectronic and nanophotonic devices. Herein, naturally occurring hydrated sodium sulfosalt gerstleyite is introduced as one new multi-element van der Waals (vdW) layered material. The mechanically exfoliated thin gerstleyite flakes are demonstrated to exhibit polarization-sensitive anisotropic linear and nonlinear optical responses including angle-resolved Raman scattering, anomalous wavelength-dependent linear dichroism transition, birefringence effect, and polarization-dependent third-harmonic generation (THG). Furthermore, the third-order nonlinear susceptibility of gerstleyite crystal is estimated by the probed …


Additive Manufacturing Of Continuous Carbon Fiber-Reinforced Sic Ceramic Composite With Multiple Fiber Bundles By An Extrusion-Based Technique, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Ming-Chuan Leu, Haiming Wen Jan 2022

Additive Manufacturing Of Continuous Carbon Fiber-Reinforced Sic Ceramic Composite With Multiple Fiber Bundles By An Extrusion-Based Technique, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Ming-Chuan Leu, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Due to the high cost, complex preparation process and difficulty in structural design, the traditional methods for carbon fiber reinforced SiC ceramic composite preparation have great limitations. This paper presents a technique for the additive manufacturing multiple continuous carbon fiber bundle-reinforced SiC ceramic composite with core-shell structure using an extrusion-based technique. A conventional nozzle system was modified to print simultaneously a water based SiC paste with continuous carbon fibers. Different levels of binder contents were investigated to optimize the stickiness, viscosity, thixotropy and viscoelasticity of the paste. After sintering, SiC whiskers were generated on the surface of fiber, which is …


Anisotropy In Impact Toughness Of Powder Bed Fused Aisi 304l Stainless Steel, Sreekar Karnati, Atoosa Khiabhani, Aaron Flood, Frank W. Liou, Joseph William Newkirk Dec 2021

Anisotropy In Impact Toughness Of Powder Bed Fused Aisi 304l Stainless Steel, Sreekar Karnati, Atoosa Khiabhani, Aaron Flood, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The current effort involved investigation into the anisotropy of AISI 304L fabricated through laser powder bed fusion. Charpy V‐notch specimens made from material fabricated at three different build orientations were tested and analyzed. A statistically significant difference among the toughness values indicates the presence of anisotropy within the additively manufactured material. While the lowest toughness was found in vertically built specimens, the horizontal specimens were found to exhibit the highest toughness. From the fracture surfaces, an atypical mode of failure was observed. Exclusive crack propagation along the interlayer track boundaries was observed. The toughness variation correlated with the ease of …


Publisher Correction: Pore Elimination Mechanisms During 3d Printing Of Metals (Nature Communications, (2019), 10, 1, (3088), 10.1038/S41467-019-10973-9), S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Qilin Guo, Lianghua Xiong, Cang Zhao, Mimglei Qu, Luis I. Escano, Xianghui Xiao, Kamel Fezzaa, Wes Everhart, Tao Sun, Lianyi Chen Dec 2019

Publisher Correction: Pore Elimination Mechanisms During 3d Printing Of Metals (Nature Communications, (2019), 10, 1, (3088), 10.1038/S41467-019-10973-9), S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Qilin Guo, Lianghua Xiong, Cang Zhao, Mimglei Qu, Luis I. Escano, Xianghui Xiao, Kamel Fezzaa, Wes Everhart, Tao Sun, Lianyi Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The original version of this Article contained an error in Fig. 4. The x-axis labels in Fig. 4a, b were incorrectly labelled 'Diameter (mm)', rather than the correct 'Diameter (µm)'. This has been corrected in both the PDF and HTML versions of the Article.


Method And Apparatus For Fabricating Ceramic And Metal Components Via Additive Manufacturing With Uniform Layered Radiation Drying, Ming-Chuan Leu, Amir Ghazanfari, Wenbin Li, Greg Hilmas, Robert G. Landers Apr 2019

Method And Apparatus For Fabricating Ceramic And Metal Components Via Additive Manufacturing With Uniform Layered Radiation Drying, Ming-Chuan Leu, Amir Ghazanfari, Wenbin Li, Greg Hilmas, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A freeform extrusion fabrication process for producing three - dimensional ceramic, metal and functionally gradient composite objects, including the steps of filling a plurality of paste sources with a respective plurality of aqueous paste compositions, operationally connecting respective syringes containing respective aqueous paste compositions to a mix ing chamber, moving a first aqueous paste composition from a first respective paste source into the mixing chamber, moving a second aqueous paste composition from a second respective paste source into the mixing chamber, mixing the first and second aqueous paste compositions to define a first admixture having a first admixture composition, extruding …


On The Feasibility Of Tailoring Copper-Nickel Functionally Graded Materials Fabricated Through Laser Metal Deposition, Sreekar Karnati, Yunlu Zhang, Frank W. Liou, Joseph William Newkirk Mar 2019

On The Feasibility Of Tailoring Copper-Nickel Functionally Graded Materials Fabricated Through Laser Metal Deposition, Sreekar Karnati, Yunlu Zhang, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this study, pulse‐width modulation of laser power was identified as a feasible means for varying the chemical gradient in copper—nickel‐graded materials. Graded material deposits of 70 wt. %. copper‐30 wt. %. nickel on 100 wt. %. nickel and vice versa were deposited and characterized. The 70/30 copper—nickel weight ratio in the feedstock powder was achieved through blending elemental copper and 96 wt. %. Ni—Delero‐22 alloy. At the dissimilar material interface over the course of four layers, the duty cycle of power was ramped down from a high value to optimized deposition conditions. This change was theorized to influence the …


Recyclability Of 304l Stainless Steel In The Selective Laser Melting Process, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk Aug 2018

Recyclability Of 304l Stainless Steel In The Selective Laser Melting Process, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

During part fabrication by selective laser melting (SLM), a powder-bed fusion process in Additive Manufacturing (AM), a large amount of energy is input from the laser into the melt pool, causing generation of spatter and condensate, both of which have the potential to settle in the surrounding powder-bed compromising its reusability. In this study, 304L stainless steel powder is subjected to five reuses in the SLM process to assess its recyclability through characterization of both powder and mechanical properties. Powder was characterized morphologically by particle size distribution measurements, oxygen content with inert gas fusion analysis, and phase identification by X-ray …


Characterization Of Impact Toughness Of 304l Stainless Steel Fabricated Through Laser Powder Bed Fusion Process, Sreekar Karnati, Atoosa Khiabhani, Aaron Flood, Frank W. Liou, Joseph William Newkirk Aug 2018

Characterization Of Impact Toughness Of 304l Stainless Steel Fabricated Through Laser Powder Bed Fusion Process, Sreekar Karnati, Atoosa Khiabhani, Aaron Flood, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this research, the impact toughness of powder bed based additively manufactured 304L stainless steel was investigated. Charpy specimens were built in vertical, horizontal and inclined (45⁰) orientations to investigate the variation in toughness with build direction. These specimens were tested in as-built and machined conditions. A significant difference in toughness was observed with varying build directions. The lowest toughness values were recorded when the notch was oriented in line with the interlayer boundary. The highest toughness was recorded when the notch was perpendicular to the interlayer boundary. A significant scatter in toughness values was also observed. The variation and …


Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu Jul 2018

Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Lattice structures fabricated by Additive Manufacturing (AM) processes are promising for many applications, such as lightweight structures and energy absorbers. However, predicting and controlling of their mechanical behaviors is challenging due to the complexity of modeling and the uncertainties exist in the manufacturing process. In this paper, we explore the possibilities enabled by controlling the local densities. A set of lattice structures with different density gradients are designed using an implicit isosurface equation, and they are manufactured by Selective Laser Melting (SLM) process with 304L stainless steel. Finite element analysis and compression test are used to evaluate their mechanical properties. …


Investigation On Ti6al4v-V-Cr-Fe-Ss316 Multi-Layers Metallic Structure Fabricated By Laser 3d Printing, Wei Li, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, William J. Seufzer Dec 2017

Investigation On Ti6al4v-V-Cr-Fe-Ss316 Multi-Layers Metallic Structure Fabricated By Laser 3d Printing, Wei Li, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, William J. Seufzer

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Joining titanium alloy and stainless steel is becoming an urgent need since their outstanding mechanical properties can be utilized integratedly. However, direct fusion joining of Ti6Al4V to SS316 can cause brittle Ti-Fe intermetallics which compromise join bonds’ mechanical properties. In this research, Laser 3D Printing was applied to explore a new Ti6Al4V to SS316 multi-metallic structure. A novel filler transition route was introduced (Ti6Al4V → V → Cr → Fe → SS316) to avoid the Ti-Fe intermetallics. Two experimental cases were performed for comparison to evaluate this novel route’s effect. In the first case, SS316 layer was directly deposited on …


Building Zr-Based Metallic Glass Part On Ti-6al-4v Substrate By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai Aug 2017

Building Zr-Based Metallic Glass Part On Ti-6al-4v Substrate By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Through using Zr intermediate layers, Zr52.5Ti5Al10Ni14.6Cu17.9 metallic glass (MG) parts are successfully built on Ti-6Al-4V substrates by laser-foil-printing (LFP) additive manufacturing technology in which MG foils are laser welded layer-by-layer onto the substrate. The printed MG part is free of porosity, cracking and crystallization; additionally, its glass transition temperature, crystallization temperature, micro-hardness, and tensile strength are very similar to the original MG material. The Zr intermediate layers are aimed at preventing direct interaction between the first layer of MG foil and the Ti substrate; otherwise, the welded MG foils would peel …


Fabricating Zirconia Parts With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas Aug 2017

Fabricating Zirconia Parts With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is an extrusion-based additive manufacturing process recently developed for fabricating dense, functional ceramic components. This paper presents a further development of this process and focuses on fabricating 3 mol% yttria-stabilized zirconia (3YSZ) components that cannot be fabricated without using support structures. The 3YSZ paste is deposited through the main nozzle, and a polycaprolactone (PCL) pellet feedstock is melted and deposited through an auxiliary nozzle to build support structures. After a green part is printed and dried, the support structures are removed by heating the part to ~70 ⁰C to melt the PCL. The part is then …


Fabricating Zirconia Components With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas Aug 2017

Fabricating Zirconia Components With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is an extrusion-based additive manufacturing process recently developed for fabricating dense, functional ceramic components. This paper presents a further development of this process and focuses on fabricating 3 mol% yttria-stabilized zirconia (3YSZ) components that cannot be fabricated without using support structures. The 3YSZ paste is deposited through the main nozzle, and a polycaprolactone (PCL) pellet feedstock is melted and deposited through an auxiliary nozzle to build support structures. After a green part is printed and dried, the support structures are removed by heating the part to ~70°C to melt the PCL. The part is then sintered …


Bonding Of 304l Stainless Steel To Cast Iron By Selective Laser Melting, Baily Thomas, Austin T. Sutton, Ming-Chuan Leu, Nikhil Doiphode Aug 2017

Bonding Of 304l Stainless Steel To Cast Iron By Selective Laser Melting, Baily Thomas, Austin T. Sutton, Ming-Chuan Leu, Nikhil Doiphode

Mechanical and Aerospace Engineering Faculty Research & Creative Works

While cast iron is widely used in industry, a major limitation is the weldability of a dissimilar material onto cast iron due to hot cracking as a result of lack of ductility from graphite flakes. Consequently, a significant amount of preheat is often employed to reduce the cooling rate in the fusion zone, which, however, may lead to distortion of the welded parts. A potential remedy could be the Selective Laser Melting (SLM) process, where only small melt pools are created and thus the overall energy input is reduced. The present paper describes an investigation of the SLM process to …


Mechanical Properties Of 304l Parts Made By Laser-Foil-Printing Technology, Chia-Hung Hung, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai Aug 2017

Mechanical Properties Of 304l Parts Made By Laser-Foil-Printing Technology, Chia-Hung Hung, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser-Foil-Printing (LFP) is a novel laminated object manufacturing process for metal additive manufacturing. It fabricates three-dimensional metal parts by using a dual-laser system to weld and cut metal foils layer by layer. A main advantage of LFP is the higher cooling rate compared to powder-based laser additive manufacturing processes due to the thermal conductivity difference between foil and powder. This study focuses on the mechanical properties of 304L stainless steel parts built by the LFP process. The experimental results indicate that the yield strength and ultimate tensile strength of LFP fabricated 304L SS parts are higher by 9% and 8% …


Influence Of Gage Length On Miniature Tensile Characterization Of Powder Bed Fabricated 304l Stainless Steel, Sreekar Karnati, Jack L. Hoerchler, Frank W. Liou, Joseph William Newkirk Aug 2017

Influence Of Gage Length On Miniature Tensile Characterization Of Powder Bed Fabricated 304l Stainless Steel, Sreekar Karnati, Jack L. Hoerchler, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Miniature tensile specimens with varying aspect ratios were fabricated from 304L stainless steel (SS) made using powder bed additive manufacturing (AM) process. The tensile characteristics measured from these specimens were analyzed to assess the impact of gage length. The study found no impact upon varying gage length on yield and ultimate strength measurements. However, a significant impact was observed on strain measurements. This data was also used to perform Weibull statistics to estimate the stochastic performance of the material. Fractography was performed to visually identify the types of flaws. A comparative study with specimens fabricated from cold rolled annealed 304 …


Characterization Of Heat-Affected Powder Generated During Selective Laser Melting Of 304l Stainless Steel Powder, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk Aug 2017

Characterization Of Heat-Affected Powder Generated During Selective Laser Melting Of 304l Stainless Steel Powder, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The selective laser melting (SLM) process is an Additive Manufacturing (AM) technique that uses a laser to fuse successive layers of powder into near fully dense components. Due to the large energy input from the laser during processing, vaporization and instabilities in the melt pool occur causing the formation of condensate and laser spatter, collectively known as heat-affected powder. Since heat-affected powder settles into the powder bed, the properties of the unconsolidated powder may be altered compromising its reusability. In this study, characterization of 304L heat-affected powder was performed through particle size distribution measurements, x-ray diffraction, metallography, energy-dispersive spectroscopy mapping, …


Investigation Of Build Strategies For A Hybrid Manufacturing Process Progress On Ti-6al-4v, Lei Yan, Leon Hill, Frank W. Liou, Joseph William Newkirk Aug 2017

Investigation Of Build Strategies For A Hybrid Manufacturing Process Progress On Ti-6al-4v, Lei Yan, Leon Hill, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The various processing parameters of a hybrid manufacturing process, including deposition and machining, is being investigated with a Design of Experiment (DoE). The intent was to explore the effect of different build strategies on the final part’s Vickers hardness, tensile test, fatigue life, and microstructure. From this experiment, the processing parameters can be linked to various mechanical properties. This will lead to the ability to create a combination of deposition and machining parameters, which will result in improved mechanical properties.


A Two-Dimensional Simulation Of Grain Structure Growth Within Substrate And Fusion Zone During Direct Metal Deposition, Jingwei Zhang, Wei Li, Frank W. Liou, Joseph William Newkirk Aug 2017

A Two-Dimensional Simulation Of Grain Structure Growth Within Substrate And Fusion Zone During Direct Metal Deposition, Jingwei Zhang, Wei Li, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this paper, a predictive model based on a cellular automaton (CA)-finite element (FE) method has been developed to simulate thermal history and microstructure evolution during metal solidification for a laser-based additive manufacturing process. The macroscopic FE calculation that is validated by thermocouple experiment is designed to update the temperature field and a high cooling rate. A cellular automata-finite element (CAFE) method is developed to describe grain growth in the fusion zone. In the mesoscopic CA model, heterogeneous nucleation sites, grain growth orientation and rate, epitaxial growth, remelting of preexisting grains, metal addition, grain competitive growth, and columnar to equiaxed …


Effect Of Powder Particle Size On The Fabrication Of Ti-6al-4v Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen, Lei Yan, Wei Li, Frank W. Liou, Joseph William Newkirk Aug 2016

Effect Of Powder Particle Size On The Fabrication Of Ti-6al-4v Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen, Lei Yan, Wei Li, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Direct Laser Metal Deposition (LMD) was used to fabricate thin-wall Ti-6Al-4V using the powder mixture of Ti-6 wt.%Al-4 wt.%V. Scanning electron microscopy (SEM), optical microscopy (OM) and energy dispersive spectroscopy (EDS) were employed to examine the chemical composition and microstructure of the as-deposited sections. Vickers hardness tests were then applied to characterize the mechanical properties of the deposit samples which were fabricated using pre-mixed elemental powders. The EDS line scans indicated that the chemical composition of the samples was homogenous across the deposit. X-ray diffraction (XRD) was used for the phase identification. After significant analysis, some differences were observed among …


Proposed Hybrid Processes For Part Building Using Fusion Welding And Friction Stir Processing, Megan A. Gegesky, Frank W. Liou, Joseph William Newkirk Aug 2016

Proposed Hybrid Processes For Part Building Using Fusion Welding And Friction Stir Processing, Megan A. Gegesky, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

It has been shown that a hybrid laser additive manufacturing and friction stir processing can deposit components with forged-like structures. This paper reports a hybrid fusion welding and friction stir process to create parts with quality structures. Combining traditional fusion welding and friction stir processing techniques for non-weldable aluminum alloys could facilitate the joining of difficult geometries in manufactured parts. This research illustrates mechanical property changes for non-weldable and weldable aluminum alloys. The Vickers hardness, and microhardness in the case of AA5052-H32, tensile strength and corrosion resistance of four processing states: base material, fusion welded material, friction stir welded material, …


3d Printing Of A Polymer Bioactive Glass Composite For Bone Repair, Caroline Murphy, Krishna C. R. Kolan, M. Long, Ming-Chuan Leu, Julie A. Semon, D. E. Day Aug 2016

3d Printing Of A Polymer Bioactive Glass Composite For Bone Repair, Caroline Murphy, Krishna C. R. Kolan, M. Long, Ming-Chuan Leu, Julie A. Semon, D. E. Day

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A major limitation of synthetic bone repair is insufficient vascularization of the interior region of the scaffold. In this study, we investigated the 3D printing of adipose derived mesenchymal stem cells (AD-MSCs) with polycaprolactone (PCL)/bioactive glass composite in a single process. This offered a three-dimensional environment for complex and dynamic interactions that govern the cell’s behavior in vivo. Borate based bioactive (13-93B3) glass of different concentrations (10 to 50 weight %) was added to a mixture of PCL and organic solvent to make an extrudable paste. AD-MSCs suspended in Matrigel was extruded as droplets using a second syringe. Scaffolds measuring …


Properties Of Partially Stabilized Zirconia Components Fabricated By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts Aug 2016

Properties Of Partially Stabilized Zirconia Components Fabricated By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Ceramic On-Demand Extrusion (CODE) process is a novel additive manufacturing process for fabricating dense ceramic components from aqueous pastes of high solids loading. In this study, 3 mol% Y2O3 stabilized tetragonal zirconia polycrystal (3Y-TZP) parts were fabricated using the CODE process. The parts were then dried in a humidity controlled environmental chamber and sintered under atmospheric pressure. Mechanical properties of the sintered parts were examined using ASTM standard test techniques, including density, Young’s modulus, flexural strength, Weibull modulus, fracture toughness and Vickers hardness. The microstructure was analyzed, and grain size was measured using scanning electron microscopy. …


Designed Extrudate For Additive Manufacturing Of Zirconium Diboride By Ceramic On-Demand Extrusion, Devin Mcmillen, Wenbin Li, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts Aug 2016

Designed Extrudate For Additive Manufacturing Of Zirconium Diboride By Ceramic On-Demand Extrusion, Devin Mcmillen, Wenbin Li, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This work describes a process by which zirconium diboride (ZrB2) parts may be fabricated using the Ceramic On-Demand Extrusion (CODE) process. An oxide-carbide-nitride system consisting of ceramic powders and pre-ceramic organics, designed to yield ZrB2 after reaction sintering, has been developed to produce an aqueous-based extrudate for subsequent processing in the CODE system. Pressurelessly sintered test specimens containing 1 wt% PVA binder achieve high relative density ≥ 99%. The viscoelastic response of the extrudate was characterized via spindle rheometry with a small sample adapter. Batches with 1 wt% PVA and 0.5 wt% Methocel show strong shear thinning characteristic, under …


Novel Extrusion-Based Additive Manufacturing Process For Ceramic Parts, Amir Ghazanfari, Wenbin Li, Ming-Chuan Leu, Greg Hilmas Aug 2016

Novel Extrusion-Based Additive Manufacturing Process For Ceramic Parts, Amir Ghazanfari, Wenbin Li, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An extrusion-based additive manufacturing process, called the Ceramic On-Demand Extrusion (CODE) process, for producing three-dimensional ceramic components with near theoretical density is introduced in this paper. In this process, an aqueous paste of ceramic particles with a very low binder content (< 1 vol%) is extruded through a moving nozzle at room temperature. After a layer is deposited, it is surrounded by oil (to a level just below the top surface of most recent layer) to preclude non-uniform evaporation from the sides. Infrared radiation is then used to partially, and uniformly, dry the just-deposited layer so that the yield stress of the paste increases and the part maintains its shape. The same procedure is repeated for every layer until part fabrication is completed. Several sample parts for various applications were produced using this process and their properties were obtained. The results indicate that the proposed method enables fabrication of large, dense ceramic parts with complex geometries.


A Novel Extrusion-Based Additive Manufacturing Process For Ceramic Parts, Amir Ghazanfari, Wenbin Li, Ming-Chuan Leu, Greg Hilmas Aug 2016

A Novel Extrusion-Based Additive Manufacturing Process For Ceramic Parts, Amir Ghazanfari, Wenbin Li, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An extrusion-based additive manufacturing process, called the Ceramic On-Demand Extrusion (CODE) process, for producing three-dimensional ceramic components with near theoretical density is introduced in this paper. In this process, an aqueous paste of ceramic particles with a very low binder content ( < 1 vol%) is extruded through a moving nozzle at room temperature. After a layer is deposited, it is surrounded by oil (to a level just below the top surface of most recent layer) to preclude non-uniform evaporation from the sides. Infrared radiation is then used to partially, and uniformly, dry the just-deposited layer so that the yield stress of the paste increases and the part maintains its shape. The same procedure is repeated for every layer until part fabrication is completed. Several sample parts for various applications were produced using this process and their properties were obtained. The results indicate that the proposed method enables fabrication of large, dense ceramic parts with complex geometries.