Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Effect Of Foot Additional Mass On The Clinical Angles Of Knee Extension Exercise, Dumitru I. Caruntu, Alfirio Trejo, Eric Rodriguez, Camila T. Alvarez B Feb 2024

Effect Of Foot Additional Mass On The Clinical Angles Of Knee Extension Exercise, Dumitru I. Caruntu, Alfirio Trejo, Eric Rodriguez, Camila T. Alvarez B

Mechanical Engineering Faculty Publications and Presentations

This study investigates the effect of foot additional mass on the abduction and internal rotation knee angles during knee extension exercise. Three subjects (two male and one female) performed four sets of ten repetitions of the knee extension exercise for the right leg. For the first set, the subject performed the exercise with no additional weight. For each set after, weight was added around the subject’s right foot and the subject was allowed a rest period before beginning the next set. The weights for sets 1, 2, 3, and 4 were 0.00kg (no additional weight) ,0.82kg, 1.64kg, and 2.27kg respectively. …


Knee Internal Forces In Moderate Squat Exercise, Dumitru I. Caruntu, Jose Mario Salinas Jan 2016

Knee Internal Forces In Moderate Squat Exercise, Dumitru I. Caruntu, Jose Mario Salinas

Mechanical Engineering Faculty Publications and Presentations

This paper deals with internal forces of human knee during moderate squat exercise. The moderate squat exercise consists of a descending phase from standing to the lowest position (largest flexion angle) in which no significant contact between thigh and calf occurs, and an ascending phase back to standing position. This research predicts the internal forces such as muscle forces, contact forces, and ligamentous forces. The ligamentous structures in this research consist of Anterior Cruciate Ligament (ACL), Posterior Cruciate Ligament (PCL), Lateral Collateral Ligament (LCL), and Medial Collateral Ligament (MCL). The ligaments are modeled as nonlinear elastic strips (they do not …