Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Leveling The Playing Field: Enacting Equitable Pedagogy To Teach Rigid Body Dynamics, Eleazar Marquez, Samuel Garcia Jun 2023

Leveling The Playing Field: Enacting Equitable Pedagogy To Teach Rigid Body Dynamics, Eleazar Marquez, Samuel Garcia

Mechanical Engineering Faculty Publications and Presentations

Research examining the quality of engineering programs across different instructions of learning has revealed that no two programs are alike. Each program has unique and distinctive features that influence the quality and rigor of education that students receive. Institutional culture, leadership, faculty preparedness, funding and many other factors influence program quality. Additionally, researchers have also noted that many institutional gaps and equity related issues are persistent and troublesome facets that further exacerbate the academic gaps in STEM education. It is within this context, that students attending top tier universities will likely have remarkedly vast academic experiences in terms of level …


Estimation Of The Response, Power Spectra, And Whirling Patterns Generated From Mud Circulating Along The Annulus During Drilling Procedures: An Alternative Mathematical Representation Via Finite Element Modelling, Eleazar Marquez Feb 2023

Estimation Of The Response, Power Spectra, And Whirling Patterns Generated From Mud Circulating Along The Annulus During Drilling Procedures: An Alternative Mathematical Representation Via Finite Element Modelling, Eleazar Marquez

Mechanical Engineering Faculty Publications and Presentations

In this study, an alternative mathematical representation of a drill-string is proposed to provide an alternative assessment on BHA dynamic alterations. Lateral vibrations remain the focal point of drill-string breakdowns given their high frequency characterization and ability to deviate perforation trajectories from the subsurface target. In this paper, the proposed model consists of an anisotropic rotor subjected to distinct RPMs, an axial force, and a bidirectional harmonic excitation with specified amplitude and assorted duration to simulate annulus motion generated from the mud fluid. In this regard, Euler-Bernoulli beam theory was adopted to establish a complete MDOF mathematical expression and thus …


Development Of An Improved Mathematical Representation Which Captures The Nonlinear Dynamic Behavior Of A Drill-String Assembly, Eleazar Marquez Feb 2023

Development Of An Improved Mathematical Representation Which Captures The Nonlinear Dynamic Behavior Of A Drill-String Assembly, Eleazar Marquez

Mechanical Engineering Faculty Publications and Presentations

In this study, an improved mathematical representation of a drill-string assembly is developed to provide an alternative assessment on vibration irregularities proliferating downhole due to bit-rock interference. Lateral vibrations receive particular attention due to their high frequency content which alter the dynamic response of the drill-string, instigate casing damage, and impede optimal penetration rates. The response of the drill-string is captured by synthesizing compatible stationary bit excitations, via an auto-regressive digital filter, and implementing Monte Carlo simulation, while the power spectral density function is approximated to elucidate the dynamic characteristics during drilling. Formulating adequate physical parameters for the equation of …


A Probabilistic Analysis In Vibration-Assisted Drilling To Measure Dynamic Behavior During Drilling And Understand Risk Factors, Eleazar Marquez, Samuel Garcia Feb 2023

A Probabilistic Analysis In Vibration-Assisted Drilling To Measure Dynamic Behavior During Drilling And Understand Risk Factors, Eleazar Marquez, Samuel Garcia

Mechanical Engineering Faculty Publications and Presentations

In this paper, a mathematical representation is proposed to further understand the dynamic behavior and risk factors associated with vibration-assisted drilling (VAD) technology. The proposed Timoshenko beam model, which characterizes VAD technology, consists of two passive, counter-rotating coaxial rotors operating simultaneously, subjected to a stochastic excitation. In this regard, a finite element technique was incorporated to determine the physical parameters of the governing equation of motion, where the shear and rotary effects, as well as the gyroscopic couples generated perpendicular to the axis of rotation, were accounted for. Further, the relative velocity between the coaxial rotors was accounted in the …