Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Mechanical Engineering

Data Generated During The 2018 Lapse-Rate Campaign: An Introduction And Overview, Gijs De Boer, Adam Houston, Jamey D. Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy E. Frazier, Michael P. Sama, Christopher Crick, David G. Schmale Iii, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, Anders Jensen Dec 2020

Data Generated During The 2018 Lapse-Rate Campaign: An Introduction And Overview, Gijs De Boer, Adam Houston, Jamey D. Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy E. Frazier, Michael P. Sama, Christopher Crick, David G. Schmale Iii, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, Anders Jensen

Mechanical Engineering Faculty Publications

Unmanned aircraft systems (UASs) offer innovative capabilities for providing new perspectives on the atmosphere, and therefore atmospheric scientists are rapidly expanding their use, particularly for studying the planetary boundary layer. In support of this expansion, from 14 to 20 July 2018 the International Society for Atmospheric Research using Remotely piloted Aircraft (ISARRA) hosted a community flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE; de Boer et al., 2020a). This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. These …


Experimental And Mathematical Tools To Predict Droplet Size And Velocity Distribution For A Two-Fluid Nozzle, Sadegh Poozesh, Nelson K. Akafuah, Heather R. Campbell, Faezeh Bashiri, Kozo Saito Dec 2020

Experimental And Mathematical Tools To Predict Droplet Size And Velocity Distribution For A Two-Fluid Nozzle, Sadegh Poozesh, Nelson K. Akafuah, Heather R. Campbell, Faezeh Bashiri, Kozo Saito

Mechanical Engineering Faculty Publications

Despite progress in laser-based and computational tools, an accessible model that relies on fundamentals and offers a reasonably accurate estimation of droplet size and velocity is lacking, primarily due to entangled complex breakup mechanisms. Therefore, this study aims at using the integral form of the conservation equations to create a system of equations by solving which, the far-field secondary atomization can be analyzed through predicting droplet size and velocity distributions of the involved phases. To validate the model predictions, experiments are conducted at ambient conditions using water, methanol, and acetone as model fluids with varying formulation properties, such as density, …


Subsystem Identification Of Feedback And Feedforward Systems With Time Delay, S. Alireza Seyyed Mousavi, Xingye Zhang, Thomas M. Seigler, Jesse B. Hoagg Dec 2020

Subsystem Identification Of Feedback And Feedforward Systems With Time Delay, S. Alireza Seyyed Mousavi, Xingye Zhang, Thomas M. Seigler, Jesse B. Hoagg

Mechanical Engineering Faculty Publications

We present an algorithm for identifying discrete-time feedback-and-feedforward subsystems with time delay that are interconnected in closed loop with a known subsystem. This frequency-domain algorithm uses only measured input and output data from a closed-loop discrete-time system, which is single input and single output. No internal signals are assumed to be measured. The orders of the unknown feedback and feedforward transfer functions are assumed to be known. We use a two-candidate-pool multi-convex-optimization approach to identify not only the feedback and feedforward transfer functions but also the feedback and feedforward time delay. The algorithm guarantees asymptotic stability of the identified closed-loop …


Laser Powder Bed Fusion Of Nitihf High-Temperature Shape Memory Alloy: Effect Of Process Parameters On The Thermomechanical Behavior, Mohammadreza Nematollahi, Guher P. Toker, Keyvan Safaei, Alejandro Hinojos, S. Ehsan Saghaian, Othmane Benafan, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia Nov 2020

Laser Powder Bed Fusion Of Nitihf High-Temperature Shape Memory Alloy: Effect Of Process Parameters On The Thermomechanical Behavior, Mohammadreza Nematollahi, Guher P. Toker, Keyvan Safaei, Alejandro Hinojos, S. Ehsan Saghaian, Othmane Benafan, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Laser powder bed fusion has been widely investigated for shape memory alloys, primarily NiTi alloys, with the goal of tailoring microstructures and producing complex geometries. However, processing high temperature shape memory alloys (HTSMAs) remains unknown. In our previous study, we showed that it is possible to manufacture NiTiHf HTSMA, as one of the most viable alloys in the aerospace industry, using SLM and investigated the effect of parameters on defect formation. The current study elucidates the effect of process parameters (PPs) on the functionality of this alloy. Shape memory properties and the microstructure of additively manufactured Ni-rich NiTiHf alloys were …


Efficient Trajectory Optimization For Curved Running Using A 3d Musculoskeletal Model With Implicit Dynamics, Marlies Nitschke, Eva Dorschky, Dieter Heinrich, Heiko Schlarb, Bjoern M. Eskofier, Anne D. Koelewijn, Antonie J. Van Den Bogert Oct 2020

Efficient Trajectory Optimization For Curved Running Using A 3d Musculoskeletal Model With Implicit Dynamics, Marlies Nitschke, Eva Dorschky, Dieter Heinrich, Heiko Schlarb, Bjoern M. Eskofier, Anne D. Koelewijn, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

Trajectory optimization with musculoskeletal models can be used to reconstruct measured movements and to predict changes in movements in response to environmental changes. It enables an exhaustive analysis of joint angles, joint moments, ground reaction forces, and muscle forces, among others. However, its application is still limited to simplified problems in two dimensional space or straight motions. The simulation of movements with directional changes, e.g. curved running, requires detailed three dimensional models which lead to a high-dimensional solution space. We
extended a full-body three dimensional musculoskeletal model to be specialized for running with directional changes. Model dynamics were implemented implicitly …


Elmer Fem-Dakota: A Unified Open-Source Computational Framework For Electromagnetics And Data Analytics, Anjali Sandip Aug 2020

Elmer Fem-Dakota: A Unified Open-Source Computational Framework For Electromagnetics And Data Analytics, Anjali Sandip

Mechanical Engineering Faculty Publications

Open-source electromagnetic design software, Elmer FEM, was interfaced with data analytics toolkit, Dakota. Furthermore, the coupled software was validated against a benchmark test. The interface developed provides a unified open-source computational framework for electromagnetics and data analytics. Its key features include uncertainty quantification, surrogate modelling and parameter studies. This framework enables a richer understanding of model predictions to better design electric machines in a time sensitive manner.


University Of Kentucky Measurements Of Wind, Temperature, Pressure And Humidity In Support Of Lapse-Rate Using Multisite Fixed-Wing And Rotorcraft Unmanned Aerial Systems, Sean C. C. Bailey, Michael P. Sama, Caleb A. Canter, Luis Felipe Pampolini, Zachary S. Lippay, Travis J. Schuyler, Jonathan D. Hamilton, Sean B. Macphee, Isaac S. Rowe, Christopher D. Sanders, Virginia G. Smith, Christina N. Vezzi, Harrison M. Wight, Jesse B. Hoagg, Marcelo I. Guzman, Suzanne Weaver Smith Aug 2020

University Of Kentucky Measurements Of Wind, Temperature, Pressure And Humidity In Support Of Lapse-Rate Using Multisite Fixed-Wing And Rotorcraft Unmanned Aerial Systems, Sean C. C. Bailey, Michael P. Sama, Caleb A. Canter, Luis Felipe Pampolini, Zachary S. Lippay, Travis J. Schuyler, Jonathan D. Hamilton, Sean B. Macphee, Isaac S. Rowe, Christopher D. Sanders, Virginia G. Smith, Christina N. Vezzi, Harrison M. Wight, Jesse B. Hoagg, Marcelo I. Guzman, Suzanne Weaver Smith

Mechanical Engineering Faculty Publications

In July 2018, unmanned aerial systems (UASs) were deployed to measure the properties of the lower atmosphere within the San Luis Valley, an elevated valley in Colorado, USA, as part of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). Measurement objectives included detailing boundary layer transition, canyon cold-air drainage and convection initiation within the valley. Details of the contribution to LAPSE-RATE made by the University of Kentucky are provided here, which include measurements by seven different fixed-wing and rotorcraft UASs totaling over 178 flights with validated data. The data from these coordinated UAS flights …


An Iterative Size Effect Model Of Surface Generation In Finish Machining, Ian S. Brown, Julius M. Schoop Jul 2020

An Iterative Size Effect Model Of Surface Generation In Finish Machining, Ian S. Brown, Julius M. Schoop

Mechanical Engineering Faculty Publications

In this work, a geometric model for surface generation of finish machining was developed in MATLAB, and subsequently verified by experimental surface roughness data gathered from turning tests in Ti-6Al4V. The present model predicts the behavior of surface roughness at multiple length scales, depending on feed, nose radius, tool edge radius, machine tool error, and material-dependent parameters—in particular, the minimum effective rake angle. Experimental tests were conducted on a commercial lathe with slightly modified conventional tooling to provide relevant results. Additionally, the model-predicted roughness was compared against pedigreed surface roughness data from previous efforts that included materials 51CrV4 and AL …


Characterization And Modeling Of Surface Roughness And Burr Formation In Slot Milling Of Polycarbonate, David Adeniji, Julius M. Schoop, Shehan Gunawardena, Craig Hanson, Muhammad Jahan Jun 2020

Characterization And Modeling Of Surface Roughness And Burr Formation In Slot Milling Of Polycarbonate, David Adeniji, Julius M. Schoop, Shehan Gunawardena, Craig Hanson, Muhammad Jahan

Mechanical Engineering Faculty Publications

Thermoplastic materials hold great promise for next-generation engineered and sustainable plastics and composites. However, due to their thermoplastic nature and viscoplastic material response, it is difficult to predict the properties of surfaces generated by machining. This is especially problematic in micro-channel machining, where burr formation and excessive surface roughness lead to poor component-surface integrity. This study attempts to model the influence of size effects, which occur due to the finite sharpness of any cutting tool, on surface finish and burr formation during micro-milling of an important thermoplastic material, polycarbonate. Experimental results show that the depth of cut does not affect …


The Effect Of Cutting Edge Geometry, Nose Radius And Feed On Surface Integrity In Finish Turning Of Ti-6al4v, Ian S. Brown, Julius M. Schoop Jan 2020

The Effect Of Cutting Edge Geometry, Nose Radius And Feed On Surface Integrity In Finish Turning Of Ti-6al4v, Ian S. Brown, Julius M. Schoop

Mechanical Engineering Faculty Publications

While the respective effects of nose radius, feed and cutting edge geometry on surface integrity have each been studied at depth, coupling between these effects is not yet sufficiently understood. Recent studies have clearly established that cutting edge micro-geometries may not only have positive effects on tool-life, but can also be used to tailor surface integrity characteristics, such as surface roughness and near-surface severe plastic deformation. To further a more fundamental understanding of the effects of cutting edge micro-geometries on surface integrity, experimental turning data was generated for a varied range of cutting tool geometries and feeds. Scanning laser interferometry …


Human-Skin-Inspired Adaptive Smart Textiles Capable Of Amplified Latent Heat Transfer For Thermal Comfort, Gunwoo Kim, Calvin Gardner, Kyuin Park, Ying Zhong, Sungho Jin Jan 2020

Human-Skin-Inspired Adaptive Smart Textiles Capable Of Amplified Latent Heat Transfer For Thermal Comfort, Gunwoo Kim, Calvin Gardner, Kyuin Park, Ying Zhong, Sungho Jin

Mechanical Engineering Faculty Publications

Thermally adaptive textiles (TATs) enable human subjects to attain thermal comfort without energy consumption, which can lead to enormous energy savings on heating, ventilation, and air conditioning (HVAC) in buildings. Herein, TAT structures which respond to the sweat and generate pores by opening an array of flap-shaped pores patterned on the fabric surface are proposed. A moisture-driven self-actuator for flap opening by constructing a bilayer consisting of a hygroscopic layer using polyethylene glycol and cellulose acetate, and a hydrophobic polymer using a polyester type polymer, is used and successfully demonstrated an essentially instant 4 °C apparent temperature cooling performance within …


Collagen Production And Niche Engineering: A Novel Strategy For Cancer Cells To Survive Acidosis In Dcis And Evolve, Mehdi Damaghi, Hidetoshi Mori, Samantha Byrne, Liping Xu, Tingan Chen, Joseph Johnson, Nathan D. Gallant, Andriy Marusyk, Alexander D. Borowsky, Robert J. Gillies Jan 2020

Collagen Production And Niche Engineering: A Novel Strategy For Cancer Cells To Survive Acidosis In Dcis And Evolve, Mehdi Damaghi, Hidetoshi Mori, Samantha Byrne, Liping Xu, Tingan Chen, Joseph Johnson, Nathan D. Gallant, Andriy Marusyk, Alexander D. Borowsky, Robert J. Gillies

Mechanical Engineering Faculty Publications

Growing tumors are dynamic and nonlinear ecosystems, wherein cancer cells adapt to their local microenvironment, and these adaptations further modify the environment, inducing more changes. From nascent intraductal neoplasms to disseminated metastatic disease, several levels of evolutionary adaptations and selections occur. Here, we focus on one example of such an adaptation mechanism, namely, “niche construction” promoted by adaptation to acidosis, which is a metabolic adaptation to the early harsh environment in intraductal neoplasms. The avascular characteristics of ductal carcinoma in situ (DCIS) make the periluminal volume profoundly acidic, and cancer cells must adapt to this to survive. Based on discovery …


Spontaneous Formation Of Sub-4 Nm Nanocrystalline Alloy Via Polymorphic Phase Transformation, Ying Zhong, Chunqing Wang, Jin Wang, Huiwen Ma, Sriram Krishnamoorthy, Vladislav Paley, Zijian Weng, Sungho Jin Jan 2020

Spontaneous Formation Of Sub-4 Nm Nanocrystalline Alloy Via Polymorphic Phase Transformation, Ying Zhong, Chunqing Wang, Jin Wang, Huiwen Ma, Sriram Krishnamoorthy, Vladislav Paley, Zijian Weng, Sungho Jin

Mechanical Engineering Faculty Publications

A new phase-transformation-induced path to spontaneous formation of extreme nanograin structure is reported. In-situ-heating-mode-microscopy exhibited a substantial grain-growth of Cu6Sn5. During cooling, the grain-growth continued, but it spontaneously switched to grain-refinement mode on phase transformation through ∼180 °C from η-Cu6Sn5 to η’-Cu6Sn5, ending up with an extremely small nanograin size of ∼2.5 nm. The cooling cycling always restores the nanograin size regardless of thermal exposure history, making this to be the first demonstration to stabilize the nanograin with its own spontaneous behavior. The Young’s Modulus was significantly reduced by ∼×3, and the elongation was remarkably increased by …


Cnn-Based Estimation Of Sagittal Plane Walking And Running Biomechanics From Measured And Simulated Inertial Sensor Data, Eva Dorschky, Marlies Nitschke, Christine F. Martindale, Antonie J. Van Den Bogert, Anne D. Koelewijn, Bjoern M. Eskofier Jan 2020

Cnn-Based Estimation Of Sagittal Plane Walking And Running Biomechanics From Measured And Simulated Inertial Sensor Data, Eva Dorschky, Marlies Nitschke, Christine F. Martindale, Antonie J. Van Den Bogert, Anne D. Koelewijn, Bjoern M. Eskofier

Mechanical Engineering Faculty Publications

Machine learning is a promising approach to evaluate human movement based on wearable sensor data. A representative dataset for training data-driven models is crucial to ensure that the model generalizes well to unseen data. However, the acquisition of sufficient data is time-consuming and often infeasible. We present a method to create realistic inertial sensor data with corresponding biomechanical variables by 2D walking and running simulations. We augmented a measured inertial sensor dataset with simulated data for the training of convolutional neural networks to estimate sagittal plane joint angles, joint moments, and ground reaction forces (GRFs) of walking and running. When …