Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Peridynamic Modeling Of Ruptures In Biomembranes, Michael Taylor, Irep Gözen, Samir Patel, Aldo Jesorka, Katia Bertoldi Nov 2016

Peridynamic Modeling Of Ruptures In Biomembranes, Michael Taylor, Irep Gözen, Samir Patel, Aldo Jesorka, Katia Bertoldi

Mechanical Engineering

We simulate the formation of spontaneous ruptures in supported phospholipid double bilayer membranes, using peridynamic modeling. Experiments performed on spreading double bilayers typically show two distinct kinds of ruptures, floral and fractal, which form spontaneously in the distal (upper) bilayer at late stages of double bilayer formation on high energy substrates. It is, however, currently unresolved which factors govern the occurrence of either rupture type. Variations in the distance between the two bilayers, and the occurrence of interconnections (“pinning sites”) are suspected of contributing to the process. Our new simulations indicate that the pinned regions which form, presumably due to …


An Assessment Of Acoustic Contrast Between Long And Short Vowels Using Convex Hulls, Erin F. Haynes, Michael Taylor Aug 2014

An Assessment Of Acoustic Contrast Between Long And Short Vowels Using Convex Hulls, Erin F. Haynes, Michael Taylor

Mechanical Engineering

An alternative to the spectral overlap assessment metric (SOAM), first introduced by Wassink [(2006). J. Acoust. Soc. Am. 119(4), 2334–2350], is introduced. The SOAM quantifies the intra- and inter-language differences between long–short vowel pairs through a comparison of spectral (F1, F2) and temporal properties modeled with best fit ellipses (F1 × F2 space) and ellipsoids (F1 × F2 × duration). However, the SOAM ellipses and ellipsoids rely on a Gaussian distribution of vowel data and a dense dataset, neither of which can be assumed in endangered languages or languages with limited available data. The method presented in this paper, called …


Numerical Simulation Of Thermo-Elasticity, Inelasticity And Rupture Inmembrane Theory, Michael Taylor Oct 2008

Numerical Simulation Of Thermo-Elasticity, Inelasticity And Rupture Inmembrane Theory, Michael Taylor

Mechanical Engineering

Two distinct two-dimensional theories for the modeling of thin elastic bodies are developed. These are demonstrated through numerical simulation of various types of membrane deformation. The work includes a continuum thermomechanics-based theory for wrinkled thin films. The theory takes into account single-layer sheets as well as composite membranes made of multiple lamina. The resulting model is applied to the study of entropic elastic elastomers as well as Mylar/aluminum composite films. The latter has direct application in the area of solar sails. Several equilibrium deformations are illustrated numerically by applying the theory of dynamic relaxation to a finite difference discretization based …