Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Background And Available Potential Energy In Numerical Simulations Of A Boussinesq Fluid, Shreyas S. Panse Jan 2013

Background And Available Potential Energy In Numerical Simulations Of A Boussinesq Fluid, Shreyas S. Panse

Masters Theses 1911 - February 2014

In flows with stable density stratification, a portion of the gravitational potential energy is available for conversion to kinetic energy. The remainder is not and is called “background potential energy”. The partition of potential energy is analogous to the classical division of energy due to motion into its kinetic and internal components. Computing background and available potential energies is important for understanding stratified flows. In many numerical simulations, though, the Boussinesq approximations to the Navier-Stokes equations are employed. These approximations are not consistent with conservation of energy. In this thesis we re-derive the governing equations for a buoyancy driven fluid …


Optimization Of Mixing In A Simulated Biomass Bed Reactor With A Center Feeding Tube, Michael T. Blatnik Jan 2013

Optimization Of Mixing In A Simulated Biomass Bed Reactor With A Center Feeding Tube, Michael T. Blatnik

Masters Theses 1911 - February 2014

Producing gasoline-type fuels from lignocellulosic biomass has two advantages over producing alcohol-type fuels from plant sugars: gasoline has superior fuel characteristics and plant lignin/cellulose does not compete with human food supplies. A promising technology for converting lignocellulose to fuel is catalytic fast pyrolysis (CFP). The process involves injecting finely ground biomass into a fluidized bed reactor (FBR) at high temperatures, which reduce the biomass to gases that react inside the catalyst particles. This entails complex hydrodynamics to efficiently mix a stream of biomass into a catalyst bed that is fluidized by a separate stream of inert gas. Understanding the hydrodynamics …


High Speed Flow Simulation In Fuel Injector Nozzles, Sukanta Rakshit Jan 2012

High Speed Flow Simulation In Fuel Injector Nozzles, Sukanta Rakshit

Masters Theses 1911 - February 2014

Atomization of fuel is essential in controlling combustion inside a direct injection engine. Controlling combustion helps in reducing emissions and boosting efficiency. Cavitation is one of the factors that significantly affect the nature of spray in a combustion chamber. Typical fuel injector nozzles are small and operate at a very high pressure, which limit the study of internal nozzle behavior. The time and length scales further limit the experimental study of a fuel injector nozzle. Simulating cavitation in a fuel injector will help in understanding the phenomenon and will assist in further development.

The construction of any simulation of cavitating …


Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello Jan 2009

Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello

Masters Theses 1911 - February 2014

Periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide drag reduction in the laminar flow regime, have been demonstrated capable of reducing drag in the turbulent flow regime as well. Superhydrophobic surfaces contain micro or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to skin friction drag reductions approaching 50%. At a given Reynolds number, drag reduction was found to increase with increasing feature size and spacing, as in …