Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty Publications

Series

Modeling

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

A Model For Predicting The Piezoresistive Effect In Microflexures Experiencing Bending And Tension Loads, Gary K. Johns, Larry L. Howell, Brian D. Jensen, Timothy W. Mclain Feb 2008

A Model For Predicting The Piezoresistive Effect In Microflexures Experiencing Bending And Tension Loads, Gary K. Johns, Larry L. Howell, Brian D. Jensen, Timothy W. Mclain

Faculty Publications

This paper proposes a model for predicting the piezoresistive effect in microflexures experiencing bending stresses. Linear models have long existed for describing piezoresistivity for members in pure tension and compression. However, extensions of linear models to more complex loading conditions do not match with experimental results. A second-order model to predict piezoresistive effects in tension, compression, and more complex loading conditions is proposed. A reduced form of the general second-order model is presented for thin flexures in bending. A three-step approach is used to determine the piezoresistive coefficients for this reduced-form model. The approach is demonstrated for two sets of …


Preliminary Modeling, Control, And Trajectory Design For Miniature Autonomous Tailsitters, Nathan B. Knoebel, Stephen R. Osborne, Deryl Snyder, Timothy W. Mclain, Randal W. Beard, Andrew Mark Eldredge Aug 2006

Preliminary Modeling, Control, And Trajectory Design For Miniature Autonomous Tailsitters, Nathan B. Knoebel, Stephen R. Osborne, Deryl Snyder, Timothy W. Mclain, Randal W. Beard, Andrew Mark Eldredge

Faculty Publications

A tailsitter UAV has unique advantages over typical fixed wing aircraft or hovercraft. This paper highlights topics of interest in our preliminary research in developing a tailsitter UAV. An aerodynamic model and quaternion-based attitude and position control scheme is presented for controlling a tailsitter through hover maneuvers, with simulation results. Desired trajectories are also developed through feedback linearization of the dynamic equations, intended for quaternion-based attitude control. Finally, a hardware platform is proposed.


Techniques In The Design Of Thermomechanical Microactuators, Larry L. Howell, Timothy W. Mclain, Michael S. Baker, Christian D. Lott Jan 2006

Techniques In The Design Of Thermomechanical Microactuators, Larry L. Howell, Timothy W. Mclain, Michael S. Baker, Christian D. Lott

Faculty Publications

The purpose of this chapter is to provide fundamental background for the design of thermomechanical microactuators. Actuation has been a particularly challenging aspect of microsystem development. Many actuation approaches used at the macro level, such as hydraulics, pneumatics, electric motors, internal combustion engines and turbines, are either too difficult to fabricate at the micro level or do not work well at that scale. Electrostatic attraction is one approach that has been widely used for actuation of microsystems; however, electrostatic actuators tend to have high voltage requirements and low output force capabilities. While electrostatic actuation is suitable for many applications, some …


Percolation Paths Of Three-Dimensions In Sensitized Stainless Steel, Alisa J. Millar Henrie Aug 2004

Percolation Paths Of Three-Dimensions In Sensitized Stainless Steel, Alisa J. Millar Henrie

Faculty Publications

The study of three-dimensional percolation paths through materials is important in its contribution to understanding defect sensitive properties of materials. This work shows the importance of grain boundary character in modeling defect sensitive boundaries. Also presented are trends of percolation of sensitized grain boundaries in 304 stainless steel (304SS). Of particular interest is how open paths form in a three-dimensional model created through serial sectioning. Evidence is presented that triple or quadruple points that contain typically two boundaries with special character that intersect the percolation path break up the path. Some boundaries with no known special qualities; they are not …


Dynamic Modeling Of Compliant Constant-Force Compression Mechanisms, Cameron Boyle, Larry L. Howell, Spencer P. Magleby, Mark S. Evans Dec 2003

Dynamic Modeling Of Compliant Constant-Force Compression Mechanisms, Cameron Boyle, Larry L. Howell, Spencer P. Magleby, Mark S. Evans

Faculty Publications

A mathematical dynamic model is derived for compliant, constant-force compression-mechanisms, based on the pseudo-rigid-body model simplification of the device. The compliant constant-force compression mechanism (CFCM) is a slider mechanism incorporating large-deflection beams, which outputs near-constant-force across the range of its designed deflection. The equation of motion is successfully calibrated with empirical data from five separate mechanisms, comprising two basic configurations of CFCMs. The dynamic equation is derived from a generalized pseudo-rigid-body model. This allows every configuration to be represented by the same model, so a separate treatment is not required for each configuration. An unexpected dynamic trait of the constant-force …