Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Towards A Fluid Solid Interaction Model Of A Dynamic Lung, Justin C. Jacobs Nov 2012

Towards A Fluid Solid Interaction Model Of A Dynamic Lung, Justin C. Jacobs

Electronic Theses and Dissertations

Because the pulmonary system is a site for both environmental particulate contamination, as well as drug delivery into the body, numerous research groups have focused on precisely understanding its inner-workings. Past research has demonstrated the need to realistically model the lung walls in order to accurately capture the complex airflow profile throughout all of the branches. Since this is paramount to properly replicating particulate transport in the lung, computational fluid dynamics simulations on their own are inadequate, as they cannot account for lung wall dilation. Only by coupling the fluid and solid domains can natural lung behavior can be effectively …


Feature-Based Neuro-Symbolic Networks For Global Diagnostics, Tracy Lynn Schantz Jan 2012

Feature-Based Neuro-Symbolic Networks For Global Diagnostics, Tracy Lynn Schantz

Electronic Theses and Dissertations

Engineered system diagnostics have been researched over the years with many successful results. From transportation systems to office technologies, many have been equipped with self-diagnostic capabilities and are called Smart Machines. In spite of these advances, current diagnostic systems are driven by direct sensory information without much concern for patterns of the system behavior or features associated with them. For large-scale systems with complex dynamics, global as well as local diagnostics become of great importance, where sensory information is used as input for the local diagnostics, and patterns of behavior or features are utilized for global diagnostics.

The main objective …


Micro Channel Cooler Performance Improvement By Insonation, Peter Webb Higgins Jan 2012

Micro Channel Cooler Performance Improvement By Insonation, Peter Webb Higgins

Electronic Theses and Dissertations

The motivation for this work is the need to remove waste heat from laser diodes and high speed transistors in processes which are exponentially increasing past 1 kW/cm2 as anticipated by Moore's Law. The hypothesis guiding the work is that ultrasonic insonation of micro coolers employed to dissipate these heat loads can improve heat removal. It is thought that the mechanism promoting the benefit is enhancement of the ability of the coolant to remove latent heat in two-phase operation by managing entrained bubble size near the cooler's exit so as to forestall flow reduction or blockage caused by large bubbles, …


Explicit Finite Element Modeling Of The Human Lumbar Spine, Milind Rao Jan 2012

Explicit Finite Element Modeling Of The Human Lumbar Spine, Milind Rao

Electronic Theses and Dissertations

Validated finite element (FE) models of the functional spinal unit (FSU) and lumbar spine are essential in design-phase device development and in assessing the mechanics associated with normal spine function and degenerative disc disease (DDD), as well as the impact of fusion and total disc replacement (TDR). Although experimental data from fully intact specimens can be used for model calibration and validation, the contributions from the individual structures (disc, facets, and ligaments) may be inappropriately distributed. Hence, creation of decompression conditions or device implantations that require structure removal may not have the proper resulting mechanics. An explicit FE formulation may …


Computationally Efficient Finite Element Models Of The Lumbar Spine For The Evaluation Of Spine Mechanics And Device Performance, Sean D. Smith Jan 2012

Computationally Efficient Finite Element Models Of The Lumbar Spine For The Evaluation Of Spine Mechanics And Device Performance, Sean D. Smith

Electronic Theses and Dissertations

Finite Element models of the lumbar spine are commonly used for the study of spine mechanics and device performance, but have limited usefulness in some applications such as clinical and design phase assessments due to long analysis times. In this study a computationally efficient L4-L5 FSU model and a L1-Sacrum multi-segment model were developed and validated. The FSU is a functional spine unit consisting of two adjacent vertebral bodies, in this case L4 and L5. The multi-segment model consists of all lumbar vertebrae and the sacrum. The models are able to accurately predict spine kinematics with significantly reduced analysis times, …