Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Dr. Jiang Zhe

Sharp corner

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

A New Microfluidic Device For Complete, Continuous Separation Of Microparticles, Liang-Liang Fan, Xu-Kun He, Yu Han, Li Du, Liang Zhao, Jiang Zhe Apr 2015

A New Microfluidic Device For Complete, Continuous Separation Of Microparticles, Liang-Liang Fan, Xu-Kun He, Yu Han, Li Du, Liang Zhao, Jiang Zhe

Dr. Jiang Zhe

A microchannel with symmetric sharp corners is reported for particle separation, based on the inter-play between the inertial lift force and the centrifugal force induced by sharp corners. At an appropriate flow rate, the centrifugal force is larger than the inertial lift force on large particles, while the inertial lift force is dominant on small particles. Hence large particles are centrifuged to the center, while small par-ticles are focused at side streams, achieving complete particle separation. The device requires no sheath flow, avoiding the dilution of analyte sample and complex operation, and can be potentially used for many lab-on-a-chip applications.


Passive Continuous Particle Focusing In A Microchannel With Symmetric Sharp Corner Structures, Liang-Liang Fan, Liang Zhao, Xu-Kun He, Hand Yu, Qing-Yu Wei, Jiang Zhe Apr 2015

Passive Continuous Particle Focusing In A Microchannel With Symmetric Sharp Corner Structures, Liang-Liang Fan, Liang Zhao, Xu-Kun He, Hand Yu, Qing-Yu Wei, Jiang Zhe

Dr. Jiang Zhe

We report a continuous passive particle focusing method using a novel microchannel with symmetric sharp corners which induce curved streamlines and large centrifugal force on particles. At appropriate flow rate, the centrifugal force generated on particles exceeds the inertial lift force; particles driven by the centrifugal force migrate toward the center of the microchannel, achieving continuous particle focus-ing. With simple structure and operation, this method can be potentially used in particle focusing and ex-traction processes in a variety of lab-on-a chip applications.