Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Mechanical Engineering

Deformation Manifold Learning Model For Multi Walled Carbon Nanotubes, Shashank S. Pathrudkar Jan 2021

Deformation Manifold Learning Model For Multi Walled Carbon Nanotubes, Shashank S. Pathrudkar

Dissertations, Master's Theses and Master's Reports

Two-Dimensional (2D) materials are being studied widely by researchers due to their superior material properties over the bulk materials. Since the isolation of graphene in 2004, graphene has gained popularity amongst the 2D materials community. Graphene when rolled into sheets form Carbon Nanotubes (CNTs) which possess excellent mechanical and electrical properties. Concentric stacks of CNTs yield Multi-walled Carbon Nanotubes (MWCNTs) which are superior to CNTs in certain aspects. It has been well established that the deformation of CNTs and MWCNTs change their mechanical and electrical properties significantly. This has opened doors for CNTs into numerous applications and also piqued the …


Transient Maneuvers And Pressure Analysis On An Automotive Torque Converter, Abigail A. Hempy Jan 2021

Transient Maneuvers And Pressure Analysis On An Automotive Torque Converter, Abigail A. Hempy

Dissertations, Master's Theses and Master's Reports

This work involves an investigation of internal fluid behavior of an automotive torque converter in a front-wheel drive automatic 6-speed transmission. The fluid behavior is identified through 29 pressure transducers instrumented throughout the torus, acquired through IR Telemetrics multiplexed channels, and analyzed with custom MATLAB code. The main vehicle operating conditions studied in this research are back drive scenarios or low motoring torques. Findings showed speed and torque limits for open converter coast down conditions as well as pressure field behavior with negative input torque.


Base Vibration Effects On Additive Manufactured Part Quality: A Study Of 3d Printing Onboard U.S. Navy Ships, Nick Jensen Jan 2021

Base Vibration Effects On Additive Manufactured Part Quality: A Study Of 3d Printing Onboard U.S. Navy Ships, Nick Jensen

Dissertations, Master's Theses and Master's Reports

The current landscape of manufacturing is evolving because of technology like additive manufacturing (AM). The mobility and compactness of AM are what make it desirable for many industry sectors. The U.S. Navy has shown interest in deploying AM on ships as it could alleviate their dependency on off-route docking to recharge supplies. However, the U.S. Navy's aspiration is currently hindered due to harsh ship-borne environments that degrade AM part quality.

This thesis focuses on vertical base vibration effects on AM part quality. An introduction is first given in Chapter 1 to familiarize the reader with the U.S. Navy's predicament. The …


Novel New Modeling Procedure For Industrial Machinery With Nonlinear Connections, Steven Whitican Jan 2021

Novel New Modeling Procedure For Industrial Machinery With Nonlinear Connections, Steven Whitican

Dissertations, Master's Theses and Master's Reports

Given current timelines for rolling out production at volume, the ability to model portions of the production process is of paramount importance. To model production, high-fidelity models of production assets must be obtained. The production assets are comprised of linear and nonlinear structures. The linear structures are well understood and defined. Significant work has, and is, being done to understand the nonlinear components. This work focuses on developing and correlating a model of a nonlinear component. The component studied and modeled is a linear guide. Linear guides are bearings which facilitate translational motion of machine axes. An accurate model of …


Sliding Mode Control Of A Nonlinear Wave Energy Converter Model, Tania Demonte Gonzalez Jan 2021

Sliding Mode Control Of A Nonlinear Wave Energy Converter Model, Tania Demonte Gonzalez

Dissertations, Master's Theses and Master's Reports

The most accurate wave energy converter models for heaving point absorbers include nonlinearities, which increase as resonance is achieved to maximize energy capture. The efficiency of wave energy converters can be enhanced by employing a control scheme that accounts for these nonlinearities. This project proposes a sliding mode control for a heaving point absorber that includes the nonlinear effects of the Froude-Krylov force. The sliding mode controller tracks a reference velocity that matches the phase of the excitation force to ensure higher energy absorption. This control algorithm is tested in regular linear waves and is compared to a complex-conjugate control …


Torrefaction Of Mixed Solid Waste, Zhuo Xu Jan 2021

Torrefaction Of Mixed Solid Waste, Zhuo Xu

Dissertations, Master's Theses and Master's Reports

The world is witnessing unprecedented accumulation of solid wastes in the environment and landfills with well-documented ecological, environmental, health, and economic consequences. With population growth and rise in living standards, solid wastes generation will increase, making the issue more pressing. In addition, current practices of solid waste disposal are creating an immediate challenge and a long-term disaster-scale problem. The solid wastes comprises two main groups of materials: (i) fiber wastes (paper, food, wood, trimming, 61% of U.S. municipal solid waste) and (ii)uniquely challenging subset of plastic wastes (13%) that become a threat to global sustainability including dangers to marine and …


Application Of Carbon Nanotube Thermophones As Duct Noise Cancelling Speakers: Using New Technology With Old Theories, Stephania M. Vaglica Jan 2021

Application Of Carbon Nanotube Thermophones As Duct Noise Cancelling Speakers: Using New Technology With Old Theories, Stephania M. Vaglica

Dissertations, Master's Theses and Master's Reports

Certain materials can produce sound through heat fluctuations. In recent times, the material capable of this was discovered to be Carbon Nanotubes (CNT). The idea is to create a flexible speaker that can be made into any shape or form to create sound. Once a speaker has been created, an active noise control system can be designed to cancel loud sounds in building and pipe ducts. This technology, similar to noise cancelling headphones, allows a user to create a modular system to mitigate noise in everyday life. Thus, the purpose of this research is to illustrate the abilities of a …


Marangoni Propulsion Of Active Particles, Saeed Jafari Kang Jan 2021

Marangoni Propulsion Of Active Particles, Saeed Jafari Kang

Dissertations, Master's Theses and Master's Reports

We study the surfing motion of active particles located at a flat liquid-gas interface. The particles create and maintain a surface tension gradient by asymmetrically discharging a surface tension-reducing agent. We employ theory and numerical simulation to investigate the Marangoni propulsion of these active surfers. First, we use the reciprocal theorem to establish a relationship between the propulsion speed and the release of the active chemical. This theoretical relation is utilized to examine the effect of wall confinement and geometry on the Marangoni-driven motion of active particle when the inertial effects are negligible and when the transports of the released …


Defect Detection Using Dynamic Analysis For Additive Manufactured Metals, Gita Deonarain Jan 2021

Defect Detection Using Dynamic Analysis For Additive Manufactured Metals, Gita Deonarain

Dissertations, Master's Theses and Master's Reports

Additive manufacturing (AM) has the ability to produce parts with complex geometries and internal features, however, for demanding applications such as the automotive and aerospace industries, it is crucial that the parts can meet the demanding functional and geometric requirements. Quality control for AM parts focuses on nondestructive methods of testing, but many of the current methods are expensive and time-consuming. The research presented in this report explores various methods of nondestructive evaluation (NDE) using dynamic analysis on stainless steel parts produced with selective laser melting (SLM). Methods include, but are not limited to, frequency response functions (FRF), impedance-based measurements, …


Nonlinear Model Predictive Control Of Wave Energy Converter, Isha Malekar Jan 2021

Nonlinear Model Predictive Control Of Wave Energy Converter, Isha Malekar

Dissertations, Master's Theses and Master's Reports

In this report model predictive control (MPC) is applied to a simulated, spherical, point absorber wave energy converter to maximize energy extraction. Constraints are applied to the buoy's displacement and the power take-off (PTO) generator force. The WEC's "truth” model uses nonlinear Froude-Krylov (FK) hydrostatic and hydrodynamic forces. This is in contrast with previous studies where linear approximations are used in the form of a hydrostatic stiffness force and a wave excitation force. The nonlinear forces become significant when the vertical displacement of the buoy exceeds about 40% of the buoy's radius. Two versions of MPC are compared where optimal …


Experimental Evaluation And Simulation Of Torque Transmissibility Frequency Response Functions Of Vibration Isolators And Absorbers For Drivetrain Applications, Luke Jurmu Jan 2021

Experimental Evaluation And Simulation Of Torque Transmissibility Frequency Response Functions Of Vibration Isolators And Absorbers For Drivetrain Applications, Luke Jurmu

Dissertations, Master's Theses and Master's Reports

Four studies involving torsional vibration isolation performance of automotive drivetrain components, make up this dissertation. One study features a prototype planetary torsional vibration absorber, a unique device that targets low frequency torsion modes in automotive drivetrains. Two studies feature experiments on several torque converters, clutch locked and open, to validate models of the hardware. The last study details experiments on a centrifugal pendulum absorber in a torque converter, to characterize the viscous friction while submerged in automatic transmission fluid (ATF). The enclosed studies improve the state of the art of drivetrain vibration absorbers and isolators, by introducing a new vibration …


Towards Systems On Cloth: The Design, Manufacturing, And Validation Of Open-Source Embroidered Resistors, Somerset Schrock Jan 2021

Towards Systems On Cloth: The Design, Manufacturing, And Validation Of Open-Source Embroidered Resistors, Somerset Schrock

Dissertations, Master's Theses and Master's Reports

This thesis is focused on advancing embroidered wearable electronics and textile electronics by creating open-source flexible resistors. Advancements in textile electronics could usher a new generation of smart devices that are entirely flexible. Current systems on cloth primarily use rigid components, which limits the flexibility and comfort of using the fabric devices. To advance this field, I propose a novel method of creating flexible electrical resistors with embroidery. To realize this technology, I created an open-source tool to create embroidery files for machine fabrication. This thesis details the methods and tools created for resistor fabrication. The resistors were tested to …


Thermomechanical Mechanisms That Cause Adhesion Of Aluminum High Pressure Die Castings To The Die, Alex Monroe Jan 2021

Thermomechanical Mechanisms That Cause Adhesion Of Aluminum High Pressure Die Castings To The Die, Alex Monroe

Dissertations, Master's Theses and Master's Reports

In high pressure die casting (HPDC) of aluminum, cast material adhering to die is a significant defect. Adhesion occurs in two primary ways. The casting may stick preventing its removal from the die. Aluminum can also adhere to the die and buildup in local areas on the die surface with additional casting cycles. This second form of adhesion is called soldering. Lubricant is the best technology to control all forms of adhesion, but it comes at the cost of casting porosity, blisters, reduced die life, and increased die casting machine wear. New strategies to prevent adhesion are desired to eliminate …


Multiscale Investigation Of Dropwise Condensation On A Smooth Hydrophilic Surface, Shahab Bayani Ahangar Jan 2021

Multiscale Investigation Of Dropwise Condensation On A Smooth Hydrophilic Surface, Shahab Bayani Ahangar

Dissertations, Master's Theses and Master's Reports

The objective of this work is to identify the fundamental mechanism of dropwise condensation on a smooth solid surface by probing the solid-vapor interface during phase-change to evaluate the existence and structure of the thin film and the initial nucleus that develop during condensation. In this work, an automated Surface Plasmon Resonance imaging (SPRi) instrument with the ability to perform imaging in intensity modulation and angular modulation is developed. The SPRi instrument is used to probe (in three dimensions) the adsorbed film that forms on the substrate during dropwise condensation. SPRi with a lateral resolution of ~ 4-10 μm, thickness …


Development Of A Method To Model An Enclosed, Coaxial Carbon Nanotube Speaker With Experimental Validation, Suraj Prabhu Jan 2021

Development Of A Method To Model An Enclosed, Coaxial Carbon Nanotube Speaker With Experimental Validation, Suraj Prabhu

Dissertations, Master's Theses and Master's Reports

Carbon nanotube (CNT) speakers operate on heat as compared to conventional loudspeakers that operate on vibration. CNT speakers are extremely lightweight, stretchable, flexible, and have high operating temperatures. Due to these advantages, CNT speakers are being considered as a viable replacement option for conventional loudspeakers. One such application is automotive exhaust noise control. The goal of this research is to design an enclosed, coaxial CNT speaker and to develop a modeling method to model this speaker using COMSOL Multiphysics.

As part of this research, an enclosed, coaxial CNT speaker was designed and manufactured for automotive exhaust noise control. The first …


Design And Implementation Of An Oxidation Catalyst For A Spark Ignited Two Stroke Snowmobile Engine, Noah Squires Jan 2021

Design And Implementation Of An Oxidation Catalyst For A Spark Ignited Two Stroke Snowmobile Engine, Noah Squires

Dissertations, Master's Theses and Master's Reports

Spark ignited two stroke engines are under increasing pressure as emissions standards become stricter, making them a perfect candidate for a catalytic aftertreatment system. Yet several significant challenges to catalysis exist. Namely two stroke exhaust systems are very sensitive to back pressure changes and high emissions concentrations can make controlling the temperature of the catalytic reaction difficult. Therefore, it is imperative that a two stroke specific catalyst design process be developed. This project focused on beginning to develop such a design process. Key results of this work include finding a location for the catalyst in the exhaust system that offers …


Integrated Torrefaction-Extrusion System For Conversion Of Fiber-Plastic Wastes Into Solid Fuels, Shreyas Kolapkar Jan 2021

Integrated Torrefaction-Extrusion System For Conversion Of Fiber-Plastic Wastes Into Solid Fuels, Shreyas Kolapkar

Dissertations, Master's Theses and Master's Reports

Waste generation is increasing, and a significant portion is being landfilled. In parallel, we are constantly pursuing cleaner fuels due to environmental and regulatory factors. To address both these challenges, torrefaction of wastes to produce clean fuels and feedstock for other thermochemical processes is one of the potential solutions. This work focuses on (a) fundamental understanding of the properties of un-torrefied and torrefied wastes and (b) development of a pilot-scale integrated torrefaction-extrusion system for converting fiber-plastic wastes to solid fuels.

In this study, a 60:40 fiber-plastic waste blend was used for performing extensive experiments on densified and un-densified wastes to …


Atomistic Continuum Simulations For Nano-Indentation And Compression Of Multi-Layer Graphene, Ashwini Nikumbh Jan 2021

Atomistic Continuum Simulations For Nano-Indentation And Compression Of Multi-Layer Graphene, Ashwini Nikumbh

Dissertations, Master's Theses and Master's Reports

Graphene has attracted a great share of research interest due to its extraordinary electrical, thermal, mechanical, and physical properties. Such spectacular properties of graphene open a wide range potential of applications in electronics, energy storage, composites, and biomedical fields. The mechanical properties of graphene can have a huge impact on its performance in graphene-based devices and thus it is important to study them. But the difficulties in experimental characterization and computational limitations to simulate large graphene sample consisting of billions of atoms makes it a challenging task. Thus, accurate and efficient simulation tools to predict the complex deformation of large …


A Combustion Model For Multi-Component Fuels Based On Relative Reactivity And Molecular Structure, Arash Jamali Jan 2021

A Combustion Model For Multi-Component Fuels Based On Relative Reactivity And Molecular Structure, Arash Jamali

Dissertations, Master's Theses and Master's Reports

A reliable multi-component surrogate fuel model needs to be able to represent both physical properties and chemical kinetics of a real fuel. However, enhancing the fidelity of a model with detailed description of physical and chemical behavior of all fuel components found in real fuels is limited by the prohibitive computational load to calculate the combustion chemistry of the fuel. Hence, it is desirable to achieve computational efficiency by reducing the number of chemical surrogates at the minimum expense of prediction accuracy. The objective of this work is to develop a model that can simulate the oxidation of multi-component fuels …


Development Of The Carbon Nanotube Thermoacoustic Loudspeaker, Troy Bouman Jan 2021

Development Of The Carbon Nanotube Thermoacoustic Loudspeaker, Troy Bouman

Dissertations, Master's Theses and Master's Reports

Traditional speakers make sound by attaching a coil to a cone and moving that coil back and forth in a magnetic field (aka moving coil loudspeakers). The physics behind how to generate sound via this velocity boundary condition has largely been unchanged for over a hundred years. Interestingly, around the time moving coil loudspeakers were first investigated the idea of using heat to generate sound was also known. These thermoacoustic speakers heat and cool a thin material at acoustic frequencies to generate the pressure wave (i.e. they use a thermal boundary condition). Unfortunately, when the thermoacoustic principle was initially discovered …


Phase-Field Fracture Modeling For Interlocking Micro-Architectured Materials, Shubham Sinha Jan 2021

Phase-Field Fracture Modeling For Interlocking Micro-Architectured Materials, Shubham Sinha

Dissertations, Master's Theses and Master's Reports

It is fascinating to see how natural materials like teeth enamel, bone and nacre possess a very high stiffness and strength in spite of the fact that they are composed of minerals mostly. Studies have shown the reason for this aberration as the presence of weaker interfaces with intricate interlocking architectures at microscopic levels in these materials. Inspired by the architecture of these materials, micro-architectured sutures with jig-saw like geometry is being studied in this research study. The main focus of this study is to examine the effects of friction co-efficient and interlocking angles of the jig-saw tabs on pullout …


Design And Testing Of An Open Source Vacuum Oven For Research, Community Recycling, And Additive Manufacturing, Benjamin R. Hubbard Jan 2021

Design And Testing Of An Open Source Vacuum Oven For Research, Community Recycling, And Additive Manufacturing, Benjamin R. Hubbard

Dissertations, Master's Theses and Master's Reports

To aid the continuing growth of open source tools in the research community, this thesis presents two broadly useful instruments which can be built and operated for a fraction of the cost of equivalent or inferior commercial products. The first device is a digitally-replicable scale, which provides a single framework for making measurements on the order of milligrams all the way up to tens of kilograms by supporting multiple types of load cells. The second device is a vacuum oven, which is validated using the first. The open source vacuum oven facilitates the dehydration of materials at low temperature, providing …


Studying The Effects Of Initial Crack Angle On The Crack Propagation In Graphene Nano-Ribbon Through Molecular Dynamics Simulations, Vijay Kumar Pathak Jan 2021

Studying The Effects Of Initial Crack Angle On The Crack Propagation In Graphene Nano-Ribbon Through Molecular Dynamics Simulations, Vijay Kumar Pathak

Dissertations, Master's Theses and Master's Reports

In this research, we have worked on the brittle fracture of graphene nano-ribbon to explore the behavior of crack propagation at different crack angles. We have performed classical Molecular Dynamics simulations using LAMMPS at ten different crack angles between 0 degrees and 45 degrees, in an increment of 5 degrees to observe the parameters that dominate the crack path. The graphene nanoribbon is loaded in the zigzag direction by pulling it in the armchair direction with a pre-existing crack in the center. We have used OVITO for the visualization of the simulation. AIREBO potential is employed in this work because …


Development Of Autonomous Vehicle Motion Planning And Control Algorithm With D* Planner And Model Predictive Control In A Dynamic Environment, Somnath Mondal Jan 2021

Development Of Autonomous Vehicle Motion Planning And Control Algorithm With D* Planner And Model Predictive Control In A Dynamic Environment, Somnath Mondal

Dissertations, Master's Theses and Master's Reports

The research in this report incorporates the improvement in the autonomous driving capability of self-driving cars in a dynamic environment. Global and local path planning are implemented using the D* path planning algorithm with a combined Cubic B-Spline trajectory generator, which generates an optimal obstacle free trajectory for the vehicle to follow and avoid collision. Model Predictive Control (MPC) is used for the longitudinal and the lateral control of the vehicle. The presented motion planning and control algorithm is tested using Model-In-the-Loop (MIL) method with the help of MATLAB® Driving Scenario Designer and Unreal Engine® Simulator by Epic Games®. Different …


Investigation Of A Machine-Plant Interface For Extracting Rooted Invasive Aquatic Plants, Brad Baas Jan 2021

Investigation Of A Machine-Plant Interface For Extracting Rooted Invasive Aquatic Plants, Brad Baas

Dissertations, Master's Theses and Master's Reports

The current solutions for managing rooted aquatic invasive plants are time consuming, have negative environmental impacts, or are cost-limiting for management organizations. The most effective treatment method is hand pulling, but hand pulling is not a feasible solution for a whole lake. A new device, the invasive aquatic plant extractor, aims to replace human divers who hand pull plants with a mechanical system. The device implements a machine-plant interface that resembles the tines of a fork. These tines will be pushed linearly through the substrate, and then raised from the substrate with the plant caught in the tines. The primary …


High Injection Pressure Impinging Diesel Spray Characteristics And Subsequent Soot Formation In Reacting Conditions, Zhihao Zhao Jan 2021

High Injection Pressure Impinging Diesel Spray Characteristics And Subsequent Soot Formation In Reacting Conditions, Zhihao Zhao

Dissertations, Master's Theses and Master's Reports

The spray impingement in diesel engines attracts the attention of engine researchers in recent decades as the physical size of the engine is reduced. Due to the spray impingement, the atomization, vaporizing and air-fuel mixing quality is altered compared to a free spray. For emission control, soot is one of the major particulate emissions from diesel combustion and its formation in an impinged spray is worthy to be investigated.

Firstly, to understand the impinged spray characteristics, the experiments for both non-vaporizing and reacting conditions were conducted in a constant volume combustion vessel. The impinged spray was captured by a high-speed …