Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

Generic Strategies To Implement Material Grading In Finite Element Methods For Isotropic And Anisotropic Materials, Ke Yu Dec 2011

Generic Strategies To Implement Material Grading In Finite Element Methods For Isotropic And Anisotropic Materials, Ke Yu

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

We look at generic strategies to transfer material grading into finite element methods. Three strategies are proposed to transfer material grading into the finite element analysis. These strategies are node-centered, element-centered, and the definition of material grading through external functions. The process to achieve each strategy is stated, and examples are used to illustrate each strategy, and to compare them. The strategies are implemented in finite-deformation nonlinear elastic analysis.

Several examples are used to illustrate the implementation of each strategy for graded isotropic materials. For these examples, the results obtained from finite element models are compared with those obtained from …


Effect Of Extracellular Matrix (Ecm) Protein Micropatterns On The Behavior Of Human Neuroblastoma Cells, Ishwari Poudel Dec 2011

Effect Of Extracellular Matrix (Ecm) Protein Micropatterns On The Behavior Of Human Neuroblastoma Cells, Ishwari Poudel

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Recent advances in patterning techniques and emerging surface microtechnologies have allowed cell micropatterning to control spatial location of the cells on a surface as well as cell shape, attachment area, and number of contacting neighbor cells. These parameters play important roles in cell cellular behaviors. Cell micropatterning has thus become one of the most important strategies for biomedical applications, such as, tissue engineering, diagnostic immunoassays, lab-on-chip devices, bio-sensing, etc., and cell biology studies as well. For neuronal cells, there have been attempts to distribute neuronal cells on specific patterns to control cell-to-cell interaction. However, there have been very limited understanding …


Strength Of Polycrystalline Ceramics Under Shock Compression, Jianbin Zhu Dec 2011

Strength Of Polycrystalline Ceramics Under Shock Compression, Jianbin Zhu

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Determinations of Some polycrystalline ceramics’ strength properties and inelastic deformation mechanisms in the shocked state are critically important to the design and optimization of armor structures involving these materials. In this work, multiscale modeling and simulations have been carried out to study strength of the effects of polycrystalline microstructure, crystal anisotropy, porosity, and their interactions with microscopic deformation/damage mechanisms on the responses of several polycrystalline ceramics under shock compression and to extract their shock strengths from the wave profiles measured in the related plate impact shock wave experiments.

With a mesoscopic computational model, the roles of intragranular microplasticity and deformation …


Ultrasonic Methods For The Characterization Of Complex Materials And Material Systems: Polymers, Structured Polymers, Soft Tissue And Bone, Charles Landais May 2011

Ultrasonic Methods For The Characterization Of Complex Materials And Material Systems: Polymers, Structured Polymers, Soft Tissue And Bone, Charles Landais

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Understanding the characteristics and structure of materials is of importance in proper modeling and effective design of many products. Complex materials such as polymers, structured material systems, or biological materials provide a particular challenge to many of the traditional methods for doing this. In this dissertation I study the use of ultrasonic wave techniques to characterize several complex materials. These include plastically deformed and aged polycarbonate (PC), a structured PC plate with water filled cavities, bovine bone, and an elastomer used as a skin simulant. In each case, this work was part of a larger project that studied different aspects …


Ultrasonic And Stereo-Optical Characterization Techniques For Applications In Mechanical Testing, Jonathan M. Hein Apr 2011

Ultrasonic And Stereo-Optical Characterization Techniques For Applications In Mechanical Testing, Jonathan M. Hein

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

This thesis considers methods developed based on ultrasonic reflections from interfaces and stereo-optical surface strain measurements to study the mechanical characterization of materials and bodies. The ultrasonic method is used to characterize wave speed and attenuation for highly attenuating samples. The stereo-optical strain measurements are used to characterize the effects of genes on mechanical properties of bone, and the dynamic characterization of blast waves in the UNL Shock Wave Trauma Mechanics facility.

A method is described and developed for characterizing the wave speed and attenuation spectrums from reflected waves from the contact surface with an unknown material. The method is …


A Peridynamic Formulation For Transient Heat Conduction In Bodies With Evolving Discontinuities, Monchai Duangpanya Mar 2011

A Peridynamic Formulation For Transient Heat Conduction In Bodies With Evolving Discontinuities, Monchai Duangpanya

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Modeling heat flow in bodies with discontinuities, such as cracks, or with inclusions that have different thermal properties has been a very challenging problem. Classical models lead to infinite heat fluxes at the tip of a crack and convergence of numerical methods that approximate solutions to such models have convergence and mesh dependency issues. To remove the difficulties faced by the classical models a novel nonlocal theory is formulated.
The new theory starts from the conservation of energy principle and uses the idea of nonlocal heat-transfer between material points. This idea leads to a transient heat transfer model that does …


A Shock Tube Technique For Blast Wave Simulation And Studies Of Flow Structure Interactions In Shock Tube Blast Experiments, Nicholas N. Kleinschmit Jan 2011

A Shock Tube Technique For Blast Wave Simulation And Studies Of Flow Structure Interactions In Shock Tube Blast Experiments, Nicholas N. Kleinschmit

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Improvised explosive devices (IED’s) are widely used against US and allied forces fighting in Iraq and Afghanistan. Exposure to IED blast may cause blast-induced traumatic brain injury (bTBI). The injury mechanisms are however not well understood. A critical need in bTBI-related research is the ability to replicate the loading conditions of IED blast waves in a laboratory environment. In this work, experimental studies have been carried out to explore the use of the shock tube technique for generating air shock waves that mimic the temporal and spatial characteristics of free-field blast waves and to investigate the blast wave-test sample interactions …