Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Experimental Investigation Of N2o/O2 Mixtures As Volumetrically Efficient Oxidizers For Small Spacecraft Hybrid Propulsion Systems, Rob L. Stoddard Dec 2019

Experimental Investigation Of N2o/O2 Mixtures As Volumetrically Efficient Oxidizers For Small Spacecraft Hybrid Propulsion Systems, Rob L. Stoddard

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

A hybrid thruster system utilizes propellants in two different stages, traditionally a solid fuel and a gaseous or liquid oxidizer. Recently hybrid thrusters have become a popular topic of research due to the high demand of a ”green” replacement for hydrazine. Not only are hybrid thruster systems typically much safer than hydrazine, but they are also a low-cost system with a high reliability in performance. The Propulsion Research Laboratory (PRL) at Utah State University (USU) has developed a hybrid thruster system using 3-D printed acrylonitrile butadiene styrene (ABS) as the fuel and gaseous oxygen (GOX) as the oxidizer. This system …


Catalytic Augmentation Of An Arc-Ignited Hydrogen Peroxide/Abs Hybrid Rocket System, Stephen A. Whitmore, Christopher J. Martinez Jul 2018

Catalytic Augmentation Of An Arc-Ignited Hydrogen Peroxide/Abs Hybrid Rocket System, Stephen A. Whitmore, Christopher J. Martinez

Mechanical and Aerospace Engineering Faculty Publications

The authors have collaborated with an industry partner to develop a prototype upper stage for a dedicated nano-launch vehicle. In addition to providing sufficient impulse for orbit insertion, the unique motor system also provides capability for multiple restarts; allowing operation as an orbital maneuvering thruster. The hybrid motor design uses 85%-90% hydrogen peroxide solution and 3-D printed ABS as propellants. In the original system design the peroxide catalyst bed was completely removed and a patented arc-ignition system thermally ignited the propellants. The thermal ignition system was effective but resulted in a combustion latency of approximately 1-second, reducing overall performance and …


Survey Of Selected Additively Manufactured Propellant For Arc-Ignition Of Hybrid Rockets, Stephen A. Whitmore, Stephen L. Merkley, Louis Tonc, Spencer D. Mathias Nov 2016

Survey Of Selected Additively Manufactured Propellant For Arc-Ignition Of Hybrid Rockets, Stephen A. Whitmore, Stephen L. Merkley, Louis Tonc, Spencer D. Mathias

Mechanical and Aerospace Engineering Faculty Publications

Results of a testing campaign to assess multiple commercially available three-dimensional printer materials for effectiveness in an arc-ignition system for hybrid rockets are presented. Previously, a form of additive manufacturing known as fused deposition modeling was used to fabricate high-density acrylonitrile butadiene styrene (ABS) fuel grains so that, when properly layered, they possess unique electrical breakdown properties. When subjected to an inductive charge, an electrical arc flows along the layered material surface and seeds combustion when the arc occurs simultaneously with the introduction of an oxidizing flow. This study investigates commercially available three-dimensional printable materials to search for equivalent or …


Throttleable Gox/Abs Launch Assist Hybrid Rocket Motor For Small Scale Air Launch Platform, Zachary S. Spurrier May 2016

Throttleable Gox/Abs Launch Assist Hybrid Rocket Motor For Small Scale Air Launch Platform, Zachary S. Spurrier

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The ability for an aircraft-based launch platform to place an orbital payload onto a nominal launch trajectory at a higher energy state -- altitude, velocity, flight path angle, and azimuth --using highly-efficient air breathing propulsion instead of a much lower-efficiency rocket system, offers the potential for a significantly smaller launch vehicle. An airborne platform also provides the ability to launch from multiple locations and allows for significantly increased "system responsiveness." The NASA Armstrong Flight Research Center’s Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a …


Performance Characterization Of Complex Fuel Port Geometries For Hybrid Rocket Fuel Grains, Andrew Bath Dec 2012

Performance Characterization Of Complex Fuel Port Geometries For Hybrid Rocket Fuel Grains, Andrew Bath

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Extensive research in hybrid rocket motors has taken place at the department of Mechanical and Aerospace Engineering at USU (Utah State University) in the last several years. USU has one of the few facilities in the country capable of static-test firing rocket motors on-campus, which allows for fast-paced testing and development not available elsewhere. Research has involved investigating propulsion devices for a range of applications, including micro-satellite thrusters, hot-gas generators, and even jet-assisted takeoff kick motors. Hybrid motors have the advantage of safety over any other chemical propulsion. Since the fuel and oxidizer are stored seperately, they are relatively inert …


Closed-Loop Thrust And Pressure Profile Throttling Of A Nitrous Oxide/Hydroxyl-Terminated Polybutadiene Hybrid Rocket Motor, Zachary W. Peterson Dec 2012

Closed-Loop Thrust And Pressure Profile Throttling Of A Nitrous Oxide/Hydroxyl-Terminated Polybutadiene Hybrid Rocket Motor, Zachary W. Peterson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale …