Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Mechanical Engineering

Multi-Fidelity Predictions For Control Allocation On The Nasa Ikhana Research Aircraft To Minimize Drag, Justice T. Schoenfeld Dec 2022

Multi-Fidelity Predictions For Control Allocation On The Nasa Ikhana Research Aircraft To Minimize Drag, Justice T. Schoenfeld

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Optimal control settings (camber scheduling) can be used by aircraft to minimize drag at various operating conditions during flight. In this work, camber schedules for minimum drag on the NASA Ikhana are obtained over a range of lift coefficients. A modern numerical lifting-line algorithm is used to predict the lift and drag of the aircraft as a function of operating condition and wing section shape (airfoil camber). The SLSQP optimization algorithm is used to solve for the camber schedule that minimizes drag for a given operating condition. The process is repeated, varying the number of control sections to evaluate the …


Linearized Rigid-Body Static And Dynamic Stability Of An Aircraft With A Bio-Inspired Rotating Empennage, Austin J. Kohler Dec 2022

Linearized Rigid-Body Static And Dynamic Stability Of An Aircraft With A Bio-Inspired Rotating Empennage, Austin J. Kohler

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The United States Air Force (USAF) will likely seek to remove the vertical tail of next-generation fighter aircraft. This work seeks to characterize the static and dynamic stability and handling qualities of a vertical-tailless aircraft concept that would satisfy the USAF’s goal. This concept aircraft, one modified with a Bio-Inspired Rotating Empennage (BIRE), does not have a vertical tail, and is instead capable of rotating the horizontal tail about the fuselage axis for maneuvering. The dynamic characteristics of the BIRE-modified aircraft are compared to a baseline unmodified aircraft, similar to the F16, with a traditional vertical tail. Linearized aerodynamic models …


Developing A Methane Detector For Aerospace Applications, Michael A. Kirk Dec 2022

Developing A Methane Detector For Aerospace Applications, Michael A. Kirk

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Greenhouse gasses in the atmosphere are raising the global temperature and causing adverse side effects. Of these greenhouse gasses, methane is one of the most impactful, second only to carbon dioxide. One of the methods for determining the concentration of methane in the atmosphere is taking images of the earth from space. The purpose of this project is to further a new imaging technology for detecting methane leaks called FINIS (Filter Incidence Narrow-band Infrared Spectrometer), thus improving our capability to detect and locate methane leaks and reduce greenhouse gas emissions. FINIS has been developed in various stages since 2018 and …


Study Into The Sensitity Of The G-H Method To Blending Distance, Cory Goates, Doug Hunsaker Oct 2022

Study Into The Sensitity Of The G-H Method To Blending Distance, Cory Goates, Doug Hunsaker

Browse all Datasets

A numerical lifting-line method (implemented in an open-source software package) is presented which can accurately estimate the aerodynamics of wings with arbitrary sweep, dihedral, and twist. Previous numerical lifting-line methods have suffered from grid convergence challenges and limitations in accurately modeling the effects of sweep, or have relied on empirical relations for swept-wing parameters and have been limited in their application to typical wing geometries. This work presents novel improvements in accuracy, flexibility, and speed for complex geometries over previous methods. In the current work, thin-airfoil theory is used to correct section lift coefficients for sweep, providing a more general …


Design Of Composite Double-Slab Radar Absorbing Structures Using Forward, Inverse, And Tandem Neural Networks, Devin Nielsen, Juhyeong Lee, Young-Woo Nam Sep 2022

Design Of Composite Double-Slab Radar Absorbing Structures Using Forward, Inverse, And Tandem Neural Networks, Devin Nielsen, Juhyeong Lee, Young-Woo Nam

Mechanical and Aerospace Engineering Faculty Publications

The survivability and mission of a military aircraft is often designed with minimum radar cross section (RCS) to ensure its long-term operation and maintainability. To reduce aircraft’s RCS, a specially formulated Radar Absorbing Structures (RAS) is primarily applied to its external skins. A Ni-coated glass/epoxy composite is a recent RAS material system designed for decreasing the RCS for the X-band (8.2 – 12.4 GHz), while maintaining efficient and reliable structural performance to function as the skin of an aircraft. Experimentally measured and computationally predicted radar responses (i.e., return loss responses in specific frequency ranges) of multi-layered RASs are expensive and …


Hyper-Velocity Impact Performance Of Foldcore Sandwich Composites, Nathan Hoch, Chase Mortensen, Juhyeong Lee, Khari Harrison, Kalyan Raj Kota, Thomas Lacy Sep 2022

Hyper-Velocity Impact Performance Of Foldcore Sandwich Composites, Nathan Hoch, Chase Mortensen, Juhyeong Lee, Khari Harrison, Kalyan Raj Kota, Thomas Lacy

Mechanical and Aerospace Engineering Faculty Publications

A foldcore is a novel core made from a flat sheet of any material folded into a desired pattern. A foldcore sandwich composite (FSC) provides highly tailorable structural performance over conventional sandwich composites made with honeycomb or synthetic polymer foam cores. Foldcore design can be optimized to accommodate complex shapes and unit cell geometries suitable for protective shielding structures

This work aims to characterize hypervelocity impact (> 2000 m/s, HVI) response and corresponding damage morphologies of carbon fiber reinforced polymer (CFRP) FSCs. A series of normal (0° impact angle) and oblique (45° impact angle) HVI (~3km/s nominal projectile velocity) impact …


Predicting Stochastic Lightning Mechanical Damage Effects On Carbon Fiber Reinforced Polymer Matrix Composites, Juhyeong Lee, Syed Zulfiqar Hussain Shah Sep 2022

Predicting Stochastic Lightning Mechanical Damage Effects On Carbon Fiber Reinforced Polymer Matrix Composites, Juhyeong Lee, Syed Zulfiqar Hussain Shah

Mechanical and Aerospace Engineering Faculty Publications

Three stochastic air blast models are developed with spatially varying elastic properties and failure strengths for predicting lightning mechanical damage to AS4/3506 carbon/epoxy composites subjected to < 100 kA peak currents: (1) the conventional weapon effects program (CWP) model, (2) the coupled eulerianlagrangian (CEL) model, and (3) the smoothed-particle hydrodynamics (SPH) model. This work is an extension of our previous studies [1–4] that used deterministic air blast models for lightning mechanical damage prediction. Stochastic variations in composite material properties were generated using the Box-Muller transformation algorithm with the mean (i.e., room temperature experimental data) and their standard deviations (i.e., 10% of the mean herein as reference). The predicted dynamic responses and corresponding damage initiation prediction for composites under equivalent air blast loading were comparable for the deterministic and stochastic models. Overall, the domains with displacement, von-Mises stress, and damage initiation contours predicted in the stochastic models were somewhat sporadic and asymmetric along the fiber’s local orientation and varied intermittently. This suggests the significance of local property variations in lightning mechanical damage prediction. Thus, stochastic air blast models may provide a more accurate lightning mechanical damage approximation than traditional (deterministic) air blast models. All stochastic models proposed in this work demonstrated satisfactory accuracy compared to the baseline models, but required substantial computational time due to the random material model generation/assignment process, which needs to be optimized in future work.


Identifying Fibre Orientations For Fracture Process Zone Characterization In Scaled Centre-Notched Quasi-Isotropic Carbon/Epoxy Laminates With A Convolutional Neural Network, Xiaodong Xu, Aser Abbas, Juhyeong Lee Sep 2022

Identifying Fibre Orientations For Fracture Process Zone Characterization In Scaled Centre-Notched Quasi-Isotropic Carbon/Epoxy Laminates With A Convolutional Neural Network, Xiaodong Xu, Aser Abbas, Juhyeong Lee

Mechanical and Aerospace Engineering Faculty Publications

This paper presents a novel X-ray Computed Tomography (CT) image analysis method to characterize the Fracture Process Zone (FPZ) in scaled centre-notched quasi-isotropic carbon/epoxy laminates. A total of 61 CT images of a small specimen were used to fine-tune a pre-trained Convolutional Neural Network (CNN) (i.e., VGG16) to classify fibre orientations. The proposed CNN model achieves a 100% accuracy when tested on the CT images of the same scale as the training set. However, the accuracy drops to a maximum of 84% when tested on unlabelled images of the specimens having larger scales potentially due to their lower resolutions. Another …


Collaborative Research: Harnessing Mechanics For The Design Of All-Solid-State Lithium Batteries, Haoran Wang Aug 2022

Collaborative Research: Harnessing Mechanics For The Design Of All-Solid-State Lithium Batteries, Haoran Wang

Funded Research Records

No abstract provided.


Effects Of Imu Sensor Location And Number On The Validity Of Vertical Acceleration Time-Series Data In Countermovement Jumping, Dianne Althouse Aug 2022

Effects Of Imu Sensor Location And Number On The Validity Of Vertical Acceleration Time-Series Data In Countermovement Jumping, Dianne Althouse

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Many devices are available for measuring the height of a CMJ. An inertial measurement unit (IMU) measures linear acceleration, orientation, and angular velocity. As an alternative to using IMU estimates of flight time, CMJ height could be estimated by integrating the IMU time-series signal for vertical acceleration to derive CMJ take-off velocity in order to track whole-body center of mass (WBCoM) movement, yet this approach would require valid IMU acceleration data. Thus, the purpose of this study was to quantify the effects of IMU sensor location and number on the validity of vertical acceleration estimation in CMJ. Thirty young adults …


Speed Of Small Droplets On Repellent Surfaces, Addison J. Litton Aug 2022

Speed Of Small Droplets On Repellent Surfaces, Addison J. Litton

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

A droplet of fluid can slide or roll down an angled surface if the droplet doesn’t stick to the plate (e.g., droplets on glass). The most common surface to allow for such this motion are hydrophobic surfaces. One example is a freshly waxed car where the rain beads up and rolls off. Another example is if a pan is heated to a high enough temperature then when small amounts of water are added the droplet will skitter around on the surface for a moment before boiling away. This high temperature effect where droplets rest on a vapor layer underneath cause …


Multidisciplinary Reference Solutions For Performance-Optimized Aircraft Wings With Tailored Aerodynamic Load Distributions, Jeffrey D. Taylor Aug 2022

Multidisciplinary Reference Solutions For Performance-Optimized Aircraft Wings With Tailored Aerodynamic Load Distributions, Jeffrey D. Taylor

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Morphing wings, or wings that can change shape during flight, have the potential to substantially reduce the amount of fuel consumed by an aircraft over the course of its flight. However, the extent to which these wings can reduce fuel consumption depends on the design of the wing, including its aerodynamic efficiency and its structural layout, and how the aircraft flies, including its flight altitude and speed. Correctly predicting how these design and operational characteristics interact is critical to predicting how wing morphing may affect aircraft fuel consumption. Many computer prediction tools exist that include the effects of these interactions, …


Novel Patterning Techniques To Improve Digital Image Correlation In Challenging Environments, Weston Craig Aug 2022

Novel Patterning Techniques To Improve Digital Image Correlation In Challenging Environments, Weston Craig

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

A camera-based measurement technique called digital image correlation (DIC) is beneficial to measure displacement and strain in challenging environments (such as post-irradiation evaluation and high temperature environments) due to its non-contacting nature and ability to obtain measurements over multiple length scales. This technique requires a surface pattern which influences the measurement resolution and accuracy of the measurements. This thesis explores two novel patterning techniques to allow the use of DIC in more challenging environments:

The first is to determine if a pattern created from printed text can be used as a pattern in DIC. Native patterns are patterns already present …


Thermodynamic Analysis Of A Novel Cycle For Nuclear Smr And Heat Transfer Performance Validation Of The Related Supercritical Working Fluids, Benjamin M. Pepper May 2022

Thermodynamic Analysis Of A Novel Cycle For Nuclear Smr And Heat Transfer Performance Validation Of The Related Supercritical Working Fluids, Benjamin M. Pepper

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Currently, all operating nuclear power facilities in the U.S. follow the same general design and process: light-water reactors boil water into steam using bundles of nuclear fuel rods as a heat source, pumping that steam through a turbine which powers a generator to produce clean year-round electricity. Water is an effective coolant, but other facilities around the world have demonstrated the ability to use non-water-based coolants in nuclear reactor designs, which consequently have their own trade-offs. Some positive consequences of using different reactor designs include enhanced safety, better economics, and cheaper clean consumer energy. The work described in this paper …


Calibration Procedure For Dic Strain Measurements During Vibration-Based Fatigue Testing, Benjamin D. Hill May 2022

Calibration Procedure For Dic Strain Measurements During Vibration-Based Fatigue Testing, Benjamin D. Hill

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Vibration-based fatigue testing is fast and effective method for determining failure characteristics of a material. Often, a small electrical device called a strain gage is bonded to a rectangular plate specimen to measure the deformation of the plate during a test. However, these strain gages break before the plate does, so an alternative method would improve the results obtained from the test. As an alternative to strain gages, Digital Image Correlation (DIC) is a non-contacting, camera-based technique that measures the deformation of an object by comparing digital images taken before and after the object is deformed. During a vibration-based fatigue …


Release Of Large Water Droplets, Jeffrey N. Fonnesbeck May 2022

Release Of Large Water Droplets, Jeffrey N. Fonnesbeck

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Water is familiar to all human beings and water droplets are an integral part of our daily lives. From irrigation sprinklers to waterfalls we can observe the formation of water droplets. For most, the droplets are so common and mundane that no thought is given to how the droplets form. Scientists have spent many decades detailing the processes that lead to droplet formation. Current theories and experiments agree quite well for specific cases such as pendant drop formation and jet breakup, but in regards to large volumes of free falling liquid there is very little experimental work to confirm the …


Improved Digital Image Correlation Techniques At High Speed And High Temperature, Lindsey J. Rowley May 2022

Improved Digital Image Correlation Techniques At High Speed And High Temperature, Lindsey J. Rowley

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

In extreme environments, such as hot-fire rocket testing, gathering strain data can be challenging due to temperature constraints. Traditional methods for measuring material deformation such as strain gages, a small device attached to a test specimen, cannot withstand the extreme temperature and tend to burn off. When these situations occur non-contacting methods such as Digital Image Correlation (DIC) are preferable. DIC is an optical method of measuring strains across the material’s entire surface by using a camera to track the deformation of a speckle pattern applied to the surface of a deforming object. When used at temperatures above approximately 500°C, …


Seam Shifted Wake In The Magnus And Non-Magnus Directions, John W. Garrett May 2022

Seam Shifted Wake In The Magnus And Non-Magnus Directions, John W. Garrett

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

An experiment was done to look at the effect baseball seams can have on how a pitched baseball moves in flight. Both non-spinning and spinning baseballs were analyzed in this study. Data was taken and analyzed at 60, 90, and 110 MPH to determine the influence of velocity and altitude on the ability of seams to alter the trajectory of a pitched baseball. Additionally, a ball's spin causes movement in a certain direction that is dependent on the spin axis. A second focus of this study was on the effect of baseball seams changing the movement in the same direction …


Quantifying The Dynamics Of An Idealized Oil-Plume In Stratified Environment Using Direct Numerical Simulations, Jasmin Ahmed May 2022

Quantifying The Dynamics Of An Idealized Oil-Plume In Stratified Environment Using Direct Numerical Simulations, Jasmin Ahmed

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Deep-water oil spills such as the incident in the northern Gulf of Mexico 2010, produce turbulent oil plumes. Multiphase turbulent plumes under stratification are simulated to understand the dynamics of oil plume in oceanic environment. The evolution of the plume is strongly affected by the level of turbulent mixing during the rise of oil through the stratified water. The relative velocity due to the difference in density between oil and water causes slip of oil in water. The plume has been modeled as a two fluid mixture-model, which allows the use of one continuity and momentum equation for the oil-water …


Ng-Torque/Tension Testing Of Bolts With Epoxy Primer, Gabrielle Van Brunt May 2022

Ng-Torque/Tension Testing Of Bolts With Epoxy Primer, Gabrielle Van Brunt

Undergraduate Honors Capstone Projects

This capstone project is in conjunction with Northrop Grumman (NG). The goal of the project is for NG to apply an epoxy in the future to aerospace structures that they produce. This epoxy is meant to prevent corrosion of threaded joints in the structures. Although NG has the epoxy and has no issues procuring it, NG does not know the properties of the epoxy; it cannot be used until the epoxy’s nut factor is experimentally determined. The epoxy nut factor will be used for design and drawing purposes on various projects. To determine the nut factor, the Aggiepoxy team created …


Small Spacecraft Thermal Control Louvers, James Anthony Mullen May 2022

Small Spacecraft Thermal Control Louvers, James Anthony Mullen

Undergraduate Honors Capstone Projects

Small satellites missions are becoming increasingly complex and are requiring more power. These demands lead to temperature fluctuations on the satellite due to spacecraft layout, sunlight and shadow in orbit, and high-powered instrumentation. Products which provide necessary thermal stability for components on the satellite are desirable to small satellite manufacturers.

In September of 2015, Dr. Allison Evans of the NASA Goddard Space Flight Center filed a patent for an innovative louver system configured for small satellite applications. The design was sized for satellites with a 1U form factor and utilized bimetallic springs to lift the louver flaps. The design was …


A Review Of Avian-Inspired Morphing For Uav Flight Control, Christina Harvey, Lawren L. Gamble, Christian R. Bolander, Douglas F. Hunsaker, James J. Joo, Daniel J. Inman Apr 2022

A Review Of Avian-Inspired Morphing For Uav Flight Control, Christina Harvey, Lawren L. Gamble, Christian R. Bolander, Douglas F. Hunsaker, James J. Joo, Daniel J. Inman

Mechanical and Aerospace Engineering Faculty Publications

The impressive maneuverability demonstrated by birds has so far eluded comparably sized uncrewed aerial vehicles (UAVs). Modern studies have shown that birds’ ability to change the shape of their wings and tail in flight, known as morphing, allows birds to actively control their longitudinal and lateral flight characteristics. These advances in our understanding of avian flight paired with advances in UAV manufacturing capabilities and applications has, in part, led to a growing field of researchers studying and developing avian-inspired morphing aircraft. Because avian-inspired morphing bridges at least two distinct fields (biology and engineering), it becomes challenging to compare and contrast …


A Tale Of Two Sides: Modeling Great Salt Lake Flows To Help Balance Current Ecosystem Influences, Eric Larsen Feb 2022

A Tale Of Two Sides: Modeling Great Salt Lake Flows To Help Balance Current Ecosystem Influences, Eric Larsen

Research on Capitol Hill

USU senior Eric, hailing from Spanish Fork, studies mechanical engineering and funded this project through an engineering student grant. While there are several sampling stations that measure the waterflow of the Great Salt Lake, there are gaps in the data they collect that limit our ability to predict how water moves between the north and south sides of the lake. Eric has been developing machine learning models that more accurately portray the flows. This has applications for both GSL ecological preservation and the brine shrimp and salt industries. Eric loved how hands-on this project was, seeing the phenomenon that his …