Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha Aug 2018

Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Composite I-beams are popular for high-strength low-weight applications. Learning the macro-mechanics and designing the composite I-beam properly are necessary. In this report, a design overview of the composite I-beam is discussed which is based on classical lamination theory where it includes the homogenization approach, the plane stress assumption and the Kirchhoff hypothesis. Using these assumptions, a method was developed to come up with the effective material properties of a beam. Formulas to calculate maximum deflection and maximum bending stress and shear stress and the stress concentration at the connection of web-flange are discussed which describe ways for designing and manufacturing …


Rickshaw For Common Ground, Marcus Dallin Cronin May 2018

Rickshaw For Common Ground, Marcus Dallin Cronin

Undergraduate Honors Capstone Projects

For this project my team and I were asked to design and manufacture a rickshaw, a device which will enable disabled individuals to experience outdoor hiking trails, for a non-profit organization based in Logan, Utah called Common Ground. Common Ground specializes in helping people with disabilities experience the outdoors in ways that would otherwise be impossible. The rickshaw will help Common Ground achieve its goals by providing them with a way to transport people with disabilities on moderately difficult hiking trails (i.e. Wind Caves Trail in Logan Canyon). In the past, Common Ground had use of a rickshaw that had …


Numerical Algorithm For Wing-Structure Design, Jeffrey D. Taylor, Douglas F. Hunsaker, James J. Joo Jan 2018

Numerical Algorithm For Wing-Structure Design, Jeffrey D. Taylor, Douglas F. Hunsaker, James J. Joo

Mechanical and Aerospace Engineering Student Publications and Presentations

Low-fidelity aerostructural optimization routines have often focused on determining the optimal spanloads for a given wing configuration. Several analytical approaches have been developed that can predict optimal lift distributions on rectangular wings with a specific payload distribution. However, when applied to wings of arbitrary geometry and payload distribution, these approaches fail. Increasing the utility and accuracy of these analytical methods can result in important benefits during later design phases. In this paper, an iterative algorithm is developed that uses numerical integration to predict the distribution of structural weight required to support the bending moments on a wing with arbitrary geometry …