Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Mechanical Engineering

Simulation Of Infiltrating Rate Driven By Surface Tension-Viscosity Of Liquid Elements From The Titanium Group Into A Packed Bed, Arturo Medina Jan 2015

Simulation Of Infiltrating Rate Driven By Surface Tension-Viscosity Of Liquid Elements From The Titanium Group Into A Packed Bed, Arturo Medina

Open Access Theses & Dissertations

The simulation of infusion of molten reactive metals (e.g., yttrium) into a porous, carbide packed bed to create carbide and boride composites was studied at ultrahigh temperatures (>1700°C). The infusion was investigated through a computational fluid dynamic (CFD) system of capillary pores and compared to a predicted analytical calculation formulated by Selmak and Rhines. Simulations of two-phase flow penetration of yttrium into a packed bed of B4C were investigated and compared with titanium, zirconium, hafnium, and samarium liquids. The non-reactive, liquid metal infusion was primarily driven by the surface tension and viscosity. The liquid metal depth and rate of …


Reaction Of Liquid Aluminium- Samarium Alloys With B4c At Ultra High Temperatures, Sanjay Shantha-Kumar Jan 2015

Reaction Of Liquid Aluminium- Samarium Alloys With B4c At Ultra High Temperatures, Sanjay Shantha-Kumar

Open Access Theses & Dissertations

Reactive studies between a packed bed of B4C and Al-Sm-Me (Me = Ti, Zr, Hf) alloy melts were carried out under a pseudo-isopiestic thermodynamic system. A graphite enclosure isolated the system under a temperature gradient with one end reaching temperatures greater than 1800 K and the opposite end of the graphite enclosure contains liquid Al with temperatures approximating 950 K. The liquid Al establishes an oxygen potential to control oxidation of very reactive elements (i.e., Al, Sm and Ti). The Al-Sm-Me alloy infuses into a packed bed of B4C reacting exothermically to form borides and carbides depending on the thermodynamic …


Defeating Anisotropy In Material Extrusion 3d Printing Via Materials Development, Ángel Ramón Torrado Pérez Jan 2015

Defeating Anisotropy In Material Extrusion 3d Printing Via Materials Development, Ángel Ramón Torrado Pérez

Open Access Theses & Dissertations

Additive Manufacturing technologies has been in continuous development for more than 35 years. Specifically, the later denominated Material Extrusion Additive Manufacturing (MEAM), was first developed by S. Scott Crump around 1988 and trademarked later as Fused Deposition Modeling (FDM). Although all of these technologies have been around for a while, it was not until recently that they have been more accessible to everyone. Today, the market of 3D printers covers all ranges of price, from very specialized, heavy and expensive machines, to desktop printers of only a few cubic inches in volume. Until recently, FDM technology had remained somewhat stagnant …


A Heterogeneous Multiscale Method For Poroelasticity, Paul M. Delgado Jan 2015

A Heterogeneous Multiscale Method For Poroelasticity, Paul M. Delgado

Open Access Theses & Dissertations

In this Thesis, we develop and analyze a heterogeneous multiscale model for coupled fluid flow and solid deformation in porous media based on operator splitting and finite volume method. The splitting method results in two elliptic multiscale PDE's in the form of a reaction diffusion equation and a linear elasticity equation. We extend our previous multiscale method from 1D to higher dimensions and develop new approaches for the inclusion of mixed boundary conditions and source terms. We derive an error estimate for our multiscale method and analyze the stability of our splitting method. We also test the effectiveness of our …


Process Monitoring In Additive Manufacturing Aimed Toward Part Qualification, Shakerur Ridwan Jan 2015

Process Monitoring In Additive Manufacturing Aimed Toward Part Qualification, Shakerur Ridwan

Open Access Theses & Dissertations

Additive Manufacturing (AM), or layer-by-layer part fabrication, has played a tremendous role in the maker culture by allowing ideas to be materialized with limited resources or knowledge in manufacturing. Various cutting edge AM technologies exist today that are used to create end-use parts; however, these technologies are still new and the processes have not gone through the rigorous evaluation process that traditional manufacturing (i.e. milling, stamping, casting) methods have been through. As a result, several important questions arise when looking to adapt AM technology, including control of the manufacturing process, effect of manufacturing process on part properties, level of variance …


Fluid Flow Characterization Of High Turbulent Intensity Compressible Flow Using Particle Image Velocimetry, Marco Efrain Quiroz Jan 2015

Fluid Flow Characterization Of High Turbulent Intensity Compressible Flow Using Particle Image Velocimetry, Marco Efrain Quiroz

Open Access Theses & Dissertations

A high turbulent intensity combustion chamber has been designed in order to operate with compressible (0.3 < M < 0.5) and preheated (T=500K) air-methane combustion. These conditions will allow the investigation of different flame regimes; most notably the proposed "Thickened Flame" regime. Initial design and flow validation has been completed in order to begin further experimentation. A 10 kHz Time Resolved Particle Image Velocimetry (TR-PIV) system and a 3 kHz Planer Laser Induced Fluorescence (PLIF) system have been integrated with the system in order to diagnose the flow field and the flame respectively. The exhaust and chamber cooling subsystems were designed to comply with safety regulations, and the control systems were set up in a way that allows automated (LabVIEW) and user controlled sequencing. This work's main purpose is to characterize and map the flow properties at maximum flow conditions (M > 0.3) in order to map the following; flow structures, kinetic energy at different length scales, velocity fluctuations and turbulent intensity. PIV measurements are carried out for three different volumetric flow rates (ð???Ì? = 25 scfm, 55 scfm, and 115 scfm) and three different grid geometries for each (BR= 67%, 61%, and 54%). Upon finding that the main flow structure consisted of jets caused by the grid at higher flowrates, experiments were done with a grid BR = 67% which was thinner (50% of original …


Carbon Based Nano-Composite Materials For Energy Storage Applications, Gerardo Rodriguez Melo Jan 2015

Carbon Based Nano-Composite Materials For Energy Storage Applications, Gerardo Rodriguez Melo

Open Access Theses & Dissertations

Energy storage systems and devices are an integral part of advanced electronic technology. Electronic technology is ever-advancing, but in order to do so, it must be supported by all its systems. The energy storage system is one key system that may dictate the performance and limitation of such electronics. Thus, research emphasis on energy storage devices has been on improving the performance of energy storage devices, such as: improved energy and power density, increased stability and cycle life, as well as reduced costs. Lithium-ion-batteries, and supercapacitors offer the potential to meet energy storage demands and to be improved further upon. …


Multi-3d System: Advanced Manufacturing Through The Implementation Of Material Handling Robotics, Jose Luis Coronel Jr. Jan 2015

Multi-3d System: Advanced Manufacturing Through The Implementation Of Material Handling Robotics, Jose Luis Coronel Jr.

Open Access Theses & Dissertations

Since the rise of additive manufacturing (AM), innovation has been at the forefront. Additive Manufacturing systems that incorporate complex processes are steadily being developed. One example is the Multi3D System, which was designed to integrate the ability to print multi-material parts with that of embedding electronics. To achieve this automated process, the Multi3D incorporates a six-axis robotic arm to transfer a build platform containing a printed part, to various manufacturing stations (two fused deposition modeling (Stratasys, FDM400mc) systems and a computer numerical control router (Techno CNC Router). The robot is a Yaskawa Motoman MH50 chosen for its payload capacity of …


Spectral Radiation Analysis Of Premixed Oxy-Syngas And Oxy-Methane Flames, Naznin Jahan Afrose Jan 2015

Spectral Radiation Analysis Of Premixed Oxy-Syngas And Oxy-Methane Flames, Naznin Jahan Afrose

Open Access Theses & Dissertations

Oxy-fuel combustion has potential to be an impeccable enhancement of current combustion techniques. For a hydrocarbon burning with oxygen the resulting exhaust stream is composed mainly of carbon dioxide and water vapor. This exhaust allows for easier carbon capture and sequestration since the water can be condensed out. Another advantage is the significant reduction of NOx since much of the nitrogen found in air-combustion systems is eliminated. These processes also provide a higher theoretical efficiency which is advantageous. Although beneficial many of the exhaust gas products radiative characteristics are unknown. Motivated by this, this paper focuses on the spectral radiation …


Design And Analysis Of A Novel Latch System Implementing Fiber-Reinforced Composite Materials, Francisco Guevara Jan 2015

Design And Analysis Of A Novel Latch System Implementing Fiber-Reinforced Composite Materials, Francisco Guevara

Open Access Theses & Dissertations

The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of …


Modeling And Preliminary Characterization Of Passive, Wireless Temperature Sensors For Harsh Environment Applications Based On Periodic Structures, Diego Ivan Delfin Manriquez Jan 2015

Modeling And Preliminary Characterization Of Passive, Wireless Temperature Sensors For Harsh Environment Applications Based On Periodic Structures, Diego Ivan Delfin Manriquez

Open Access Theses & Dissertations

Wireless temperature sensing has attained significant attention in recent years due to the increasing need to develop reliable and affordable sensing solutions for energy conversion systems and other harsh environment applications. The development of next generation sensors for energy production processing parameters, such as temperature and pressure, can result in better performance of the system. Particularly, continuous temperature monitoring in energy conversion systems can result in enhancements such as better system integrity, less pollution and higher thermal efficiencies. However, the conditions experienced in these system components hinder the performance of current solutions due to the presence of semi-conductor materials and …


An Improved Sin-Hyperbolic Constitutive Model For Creep Deformation And Damage, Mohammad Shafinul Haque Jan 2015

An Improved Sin-Hyperbolic Constitutive Model For Creep Deformation And Damage, Mohammad Shafinul Haque

Open Access Theses & Dissertations

Inspection and maintenance of industrial gas turbines (IGTs) cost millions of dollars. Growing demand of obtaining higher IGT efficiency leads to higher temperature and pressure operating conditions. Long exposure of turbine components at elevated temperature and pressure

makes creep damage critically important to consider during planning, designing and operating conditions. Effective and economic maintenance requires accurate creep deformation, damage

evolution and rupture life prediction information. Creep prediction models are used to determine the state of the turbine components and to schedule the inspection, maintenance and replacement time periods. The more accurate the prediction model, the less is the overall cost …


Design Of A High Intensity Turbulent Combustion System, Mohammad Arif Hossain Jan 2015

Design Of A High Intensity Turbulent Combustion System, Mohammad Arif Hossain

Open Access Theses & Dissertations

In order to design next generation gas turbine combustor and rocket engines, a systematic study of flame structure at high intensity turbulent flow is necessary. The fundamental study of turbulent premixed combustion has been a major research concern for decades. The work is focused on the design and development of a high intensity turbulent combustion system which can be operated at compressible (0.3 < M < 0.5), preheated (T0=500K) and premixed conditions in order to investigate the 'Thickened Flame' regime. An air-methane mixture has been used as the fuel for this study. An optically accessible backward-facing step stabilized combustor has been designed for a maximum operating pressure of 6 bar. A grid has been introduced with different blockage ratios (BR = 54%, 61% & 67%) in order to generate turbulence inside the combustor for the experiment. Optical access is provided via quartz windows on three sides of the combustion chamber. Finite Element Analysis (FEA) is done in order to verify the structural integrity of the combustor at rated conditions. In order to increase the inlet temperature of the air, a heating section was designed to use commercially available in-line heaters. Separate cooling subsystems have been designed for chamber cooling and exhaust cooling. The LabVIEW software interface has been selected as the control mechanism for the experimental setup. A 10 kHz Time Resolved Particle Image Velocimetry (TR-PIV) system and a 3 kHz Planer Laser Induced Fluorescence (PLIF) system have been integrated with the system in order to diagnose the flow field and the flame respectively. The primary understanding of the flow field inside the combustor was achieved through the use of Detached Eddy Simulation (DES) by using commercially available software package ANSYS FLUENT. Preliminary validation is done by 10 kHz TR-PIV technique. Both qualitative and quantitative analysis have been done for CFD and experiment. Major flow parameters such as average velocity, fluctuation of velocity, kinetic energy, and turbulent intensity have been calculated for two distinct Reynolds number (Re = 815 & 3500). PIV results are compared with CFD results which show significant agreement with each other.


Thermal Shock Studies On Carbon-Carbon Composites: Experimentation And Analysis, Alma Lucia Leanos Jan 2015

Thermal Shock Studies On Carbon-Carbon Composites: Experimentation And Analysis, Alma Lucia Leanos

Open Access Theses & Dissertations

The oxidation behavior of C/C composites under thermal shock conditions in air is understood and predicted experimentally and by computational efforts. In Chapter. 1, both compressive properties and oxidation behavior of pristine and thermal shock exposed 2D C/C composite specimens were examined. Pristine test specimens were exposed to thermal shock conditions with temperatures ranging from 400°C to 1000°C in an oxidizing environment, followed by compression tests on pristine and thermal shock exposed specimens to obtain their compressive responses.

Similarly, in Chapter. 2, the influence of thermal shock conditions on both, the extent of carbon materials decomposition and the through-thickness compressive …


Novel Classification Of Slow Movement Objects In Urban Traffic Environments Using Wideband Pulse Doppler Radar, Berta Rodriguez Hervas Jan 2015

Novel Classification Of Slow Movement Objects In Urban Traffic Environments Using Wideband Pulse Doppler Radar, Berta Rodriguez Hervas

Open Access Theses & Dissertations

Every year thousands of people are involved in traffic accidents, some of which are fatal. An important percentage of these fatalities are caused by human error, which could be prevented by increasing the awareness of drivers and the autonomy of vehicles. Since driver assistance systems have the potential to positively impact tens of millions of people, the purpose of this research is to study the micro-Doppler characteristics of vulnerable urban traffic components, i.e. pedestrians and bicyclists, based on information obtained from radar backscatter, and to develop a classification technique that allows automatic target recognition with a vehicle integrated system. For …


Design And Testing Of An Ox/Ch4 Swirl Torch Ignition System, Gabriel Ricardo Trujillo Jan 2015

Design And Testing Of An Ox/Ch4 Swirl Torch Ignition System, Gabriel Ricardo Trujillo

Open Access Theses & Dissertations

NASA has renewed its interest in oxygen and methane as propellants for propulsion. Some of the reasons that drive this interest are the ease of storage of liquid methane when compared to hydrogen, the handling safety when compared to hypergols, in-situ resource utilization and its relative clean burning process. This project is part of the larger goal of the Center for Space Exploration Technology Research (cSETR) to better understand the aspects of using this propellants to create future hardware that are specifically optimized for their use. This paper discusses the testing of a previous iteration of the swirl torch igniter …


Development Of A Novel Hybrid Unified Viscoplastic Constitutive Model, Luis Alejandro Varela Jimenez Jan 2015

Development Of A Novel Hybrid Unified Viscoplastic Constitutive Model, Luis Alejandro Varela Jimenez

Open Access Theses & Dissertations

Gas turbines are now days used in power plants for power generation and for propulsion in the aerospace industry. In these applications gas turbines are exposed to severe temperature and pressure variations during operating cycles. These severe operating conditions exposed the turbineâ??s components to multiple deformation mechanisms which degrade the material and eventually lead to failure of the components. Nickel based and austenitic super alloys are candidate material used for these applications due to its high strength and corrosion resistance at elevated temperatures. At such temperature levels, candidate materials exhibit a rate-dependent or viscoplastic behavior which difficult the prediction or …