Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Texas at El Paso

Theses/Dissertations

PIV

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Design Of A High Intensity Turbulent Combustion System, Mohammad Arif Hossain Jan 2015

Design Of A High Intensity Turbulent Combustion System, Mohammad Arif Hossain

Open Access Theses & Dissertations

In order to design next generation gas turbine combustor and rocket engines, a systematic study of flame structure at high intensity turbulent flow is necessary. The fundamental study of turbulent premixed combustion has been a major research concern for decades. The work is focused on the design and development of a high intensity turbulent combustion system which can be operated at compressible (0.3 < M < 0.5), preheated (T0=500K) and premixed conditions in order to investigate the 'Thickened Flame' regime. An air-methane mixture has been used as the fuel for this study. An optically accessible backward-facing step stabilized combustor has been designed for a maximum operating pressure of 6 bar. A grid has been introduced with different blockage ratios (BR = 54%, 61% & 67%) in order to generate turbulence inside the combustor for the experiment. Optical access is provided via quartz windows on three sides of the combustion chamber. Finite Element Analysis (FEA) is done in order to verify the structural integrity of the combustor at rated conditions. In order to increase the inlet temperature of the air, a heating section was designed to use commercially available in-line heaters. Separate cooling subsystems have been designed for chamber cooling and exhaust cooling. The LabVIEW software interface has been selected as the control mechanism for the experimental setup. A 10 kHz Time Resolved Particle Image Velocimetry (TR-PIV) system and a 3 kHz Planer Laser Induced Fluorescence (PLIF) system have been integrated with the system in order to diagnose the flow field and the flame respectively. The primary understanding of the flow field inside the combustor was achieved through the use of Detached Eddy Simulation (DES) by using commercially available software package ANSYS FLUENT. Preliminary validation is done by 10 kHz TR-PIV technique. Both qualitative and quantitative analysis have been done for CFD and experiment. Major flow parameters such as average velocity, fluctuation of velocity, kinetic energy, and turbulent intensity have been calculated for two distinct Reynolds number (Re = 815 & 3500). PIV results are compared with CFD results which show significant agreement with each other.


Development Of A High Pressure Optically Accessible Combustor And Shear Co Axial Injector, Christopher David Navarro Jan 2012

Development Of A High Pressure Optically Accessible Combustor And Shear Co Axial Injector, Christopher David Navarro

Open Access Theses & Dissertations

A trend in the last decade in the field of propulsion and rocketry is leaning toward the use of the combination of Liquid Methane and Liquid Oxygen as propellant fuels. This is in contrast with the earlier trend of using Hydrogen systems and toxic hypergolic systems. The Multi-Purpose Optically Accessible Combustor (MOAC) and Shear Coaxial injectors have been developed to investigate injector design and combustion research involving Oxygen and Methane propellants. The MOAC is intended for the experimentation and research of combustion of liquid and gaseous propellants. Development of the MOAC system and versatility to use a number of injector …