Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

Doctoral Dissertations

Theses/Dissertations

2017

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Dynamic In Vivo Skeletal Feature Tracking Via Fluoroscopy Using A Human Gait Model, William Patrick Anderson Dec 2017

Dynamic In Vivo Skeletal Feature Tracking Via Fluoroscopy Using A Human Gait Model, William Patrick Anderson

Doctoral Dissertations

The Tracking Fluoroscope System II, a mobile robotic fluoroscopy platform, developed and built at the University of Tennessee, Knoxville, presently employs a pattern matching algorithm in order to identify and track a marker placed upon a subject’s knee joint of interest. The purpose of this research is to generate a new tracking algorithm based around the human gait cycle for prediction and improving the overall accuracy of joint tracking.

This research centers around processing the acquired x-ray images of the desired knee joint obtained during standard clinical operation in order to identify and track directly through the acquired image. Due …


Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An Aug 2017

Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An

Doctoral Dissertations

This study was conducted to understand effects of some of key factors (i.e., anode surface properties, formation cycling conditions, and electrolyte conditions) on solid electrolyte interphase (SEI) formation in lithium ion batteries (LIBs) and the battery cycle life. The SEI layer passivates electrode surfaces and prevents electron transfer and electrolyte diffusion through it while allowing lithium ion diffusion, which is essential for stable reversible capacities. It also influences initial capacity loss, self-discharge, cycle life, rate capability and safety. Thus, SEI layer formation and electrochemical stability are primary topics in LIB development. This research involves experiments and discussions on key factors …


Value Of Flow Measurement Accuracy In Hydropower Plants With Short Converging Intakes, Mark Herbert Christian Aug 2017

Value Of Flow Measurement Accuracy In Hydropower Plants With Short Converging Intakes, Mark Herbert Christian

Doctoral Dissertations

This report documents research undertaken to determine the value of flow measurement accuracy in hydropower plants with short converging intakes. The motivation was to provide a suite of tools and best practices to streamline flow measurement sensor modeling in any type of hydropower plant. The Lower Granite Lock and Dam hydroplant was leveraged in development of the analysis tool. Computational fluid dynamics (CFD) models of Lower Granite Unit 4 provided necessary information about the hydraulic structures distribution through the unit. Two different CFD models were created. The first was done using the as-built plans; the second was created through modifications …


Computational Thermal-Hydraulics Modeling Of Twisted Tape Enabled High Heat Flux Components, Emily Buckman Clark May 2017

Computational Thermal-Hydraulics Modeling Of Twisted Tape Enabled High Heat Flux Components, Emily Buckman Clark

Doctoral Dissertations

The goal of this work was to perform a computational investigation into the thermalhydraulic performance of water-cooled, twisted tape enabled high heat flux components at fusion relevant conditions. Fusion energy is a promising option for future clean energy generation, but the community must overcome significant scientific and engineering challenges before meeting the goal of electricity generation. One such challenge is the high heat flux thermal management of components in fusion and plasma physics experiments. Plasma facing components in the magnetic confinement devices, such as ITER or W7-X, will be subjected to extreme heat loads on the order of 10-20 MW/m …


Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion May 2017

Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion

Doctoral Dissertations

Uranium enrichment finds a direct and indispensable function in both peaceful and nonpeaceful nuclear applications. Today, over 99% of enriched uranium is produced by gas centrifuge technology. With the international dissemination of the Zippe archetypal design in 1960 followed by the widespread illicit centrifuge trafficking efforts of the A.Q. Khan network, traditional barriers to enrichment technologies are no longer as effective as they once were. Consequently, gas centrifuge technology is now regarded as a high-priority nuclear proliferation threat, and the international nonproliferation community seeks new avenues to effectively and efficiently respond to this emergent threat.

Effective response first requires an …


Modeling, Analysis, Force Sensing And Control Of Continuum Robots For Minimally Invasive Surgery, Caroline Bryson Black May 2017

Modeling, Analysis, Force Sensing And Control Of Continuum Robots For Minimally Invasive Surgery, Caroline Bryson Black

Doctoral Dissertations

This dissertation describes design, modeling and application of continuum robotics for surgical applications, specifically parallel continuum robots (PCRs) and concentric tube manipulators (CTMs). The introduction of robotics into surgical applications has allowed for a greater degree of precision, less invasive access to more remote surgical sites, and user-intuitive interfaces with enhanced vision systems. The most recent developments have been in the space of continuum robots, whose exible structure create an inherent safety factor when in contact with fragile tissues. The design challenges that exist involve balancing size and strength of the manipulators, controlling the manipulators over long transmission pathways, and …