Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of South Carolina

Theses and Dissertations

Evaporation

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Characterization Of Evaporation/Condensation During Pool Boiling And Flow Boiling, Mostafa Mobli Jan 2018

Characterization Of Evaporation/Condensation During Pool Boiling And Flow Boiling, Mostafa Mobli

Theses and Dissertations

Present dissertation has investigated pool and flow boiling and their characteristics via numerical means. A code was developed to investigate and enhance heat transfer performance during different modes of phase change phenomena. Multiphase heat transfer has proven to be one of the most effective means of heat transfer in different industries, therefore, there have been numerous experimental and numerical studies on the subject of phase change phenomena in a wide range of conditions and setups; yet there are complex bubble dynamics and heat transfer characteristics that remain unresolved. To have a more detailed look at and a better understanding of …


Boiling And Evaporation On Micro/Nanoengineered Surfaces, Xianming Dai Jan 2013

Boiling And Evaporation On Micro/Nanoengineered Surfaces, Xianming Dai

Theses and Dissertations

Two-phase transport is widely used in energy conversion and storage, energy efficiency and thermal management. Surface roughness and interfacial wettability are two major impact factors for two-phase transport. Micro/nanostructures play important roles in varying the surface roughness and improving interfacial wettability. In this doctoral study, five types of micro/nanoengineered surfaces were developed to systematically study the impacts of interfacial wettability and flow structures on nucleate boiling and capillary evaporation. These surfaces include: 1) superhydrophilic atomic layer deposition (ALD) coatings; 2) partially hydrophobic and partially hydrophilic composite interfaces; 3) micromembrane-enhanced hybrid wicks; 4) superhydrophilic micromembrane-enhnaced hybrid wicks, and 5) functionalized carbon …