Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nevada, Las Vegas

2003

Holes

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Modeling, Fabrication, And Optimization Of Niobium Cavities: Final Phase, Robert A. Schill Jr., Mohamed Trabia Jan 2003

Modeling, Fabrication, And Optimization Of Niobium Cavities: Final Phase, Robert A. Schill Jr., Mohamed Trabia

Transmutation Sciences Materials (TRP)

Niobium cavities are important parts of the integrated NC/SC high-power linacs. Over the years, researchers in several countries have tested various cavity shapes. They concluded that elliptically shaped cells are the most appropriate shape for superconducting cavities. The need for very clean surfaces lead to the use of a buffered chemical polishing produce for surface cleaning to get good performance of the cavities. This is the third and final phase of the study.

The first phase has resulted in improving the basic understanding of multipacting and the process of chemical etching. The second phase has resulted in an experimental setup …


Modeling, Fabrication, And Optimization Of Niobium Cavities, Robert A. Schill Jr., Mohamed Trabia, William Culbreth Jan 2003

Modeling, Fabrication, And Optimization Of Niobium Cavities, Robert A. Schill Jr., Mohamed Trabia, William Culbreth

Transmutation Sciences Materials (TRP)

One of the key technologies for the deployment of accelerator driven transmutation systems is the accelerator itself. To increase the efficiency of the high-power accelerators needed to support the transmutation mission, the national and international accelerator teams have proposed using elliptical superconducting niobium cavities. This project is tasked with examining the impacts of the design and fabrication technologies for these elliptical niobium cavities on their performance. Niobium was selected primarily due to its behavior at low temperatures.

One of the major sources of energy loss from a superconducting accelerator cavity is a process known as multiple impacting (or “multipacting”) of …