Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nevada, Las Vegas

Materials Science and Engineering

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 103

Full-Text Articles in Mechanical Engineering

Metastability And Degradation In Cu(In,Ga)Se2 Thin-Film Solar Cells, Mohsen Jahandardoost May 2023

Metastability And Degradation In Cu(In,Ga)Se2 Thin-Film Solar Cells, Mohsen Jahandardoost

UNLV Theses, Dissertations, Professional Papers, and Capstones

Cu(In,Ga)(S,Se)2 or CIGS is a thin-film semiconductor that has shown a device efficiency of 23.35% and 24.2% for single-junction and perovskite/CIGS tandem solar cells, respectively. CIGS offers promising properties such as tunable bandgap and ease of processing making them great candidates for thin-film tandem devices. However, knowledge of the effect of material defects, buffer materials, and post-deposition treatment (PDT) on degradation and metastability behavior in these devices is not well understood.In this dissertation, metastability and long-term degradation of CIGS thin-film solar cells have been investigated under combinatorial stress factors of heat, light, and voltage bias to systematically understand the effect …


Polyvinyl Chloride Gels: Theoretical Modeling Of Their Actuation Mechanism And Characterization Of Their Properties, Zachary Frank Dec 2021

Polyvinyl Chloride Gels: Theoretical Modeling Of Their Actuation Mechanism And Characterization Of Their Properties, Zachary Frank

UNLV Theses, Dissertations, Professional Papers, and Capstones

Polyvinyl chloride (PVC) gels are an electroactive polymer smart material which has been considered in a variety of actuator applications. Their large deformation, fast response rates, optical transparency, and soft nature has made them a key area of interest in fields ranging from soft robotics to optics. PVC gels are made from PVC mixed with large quantities of plasticizer, such as dibutyl adipate (DBA). When a voltage is applied, the gel experiences an “anodophilic” deformation (in which it moves preferentially towards the anode). This unique characteristic is the result of a charge buildup near the anode surface, which creates electromechanical …


Silk Fibroin Supraparticles Created By The Evaporation Of Colloidal Ouzo Droplets, Ashley Lamb, Fengjie He, Shengjie Zhai, Hui Zhao Aug 2021

Silk Fibroin Supraparticles Created By The Evaporation Of Colloidal Ouzo Droplets, Ashley Lamb, Fengjie He, Shengjie Zhai, Hui Zhao

Mechanical Engineering Faculty Research

Due to its high biocompatibility and biodegradability, supraparticles made from silk fibroin—produced from Bombyx mori (B. mori) cocoons—can find various applications in biomedical fields. The evaporation of Ouzo droplets by not requiring energy nor a surfactant is an environmentally friendly, easy, and cost-effective strategy to fabricate three-dimensional supraparticles, tackling the so-called “coffee ring effect” associated with droplet evaporation. Silk fibroins are dissolved into quaternary droplets, comprised of ultrapure water, ethanol, trans-anethole oil, and formic acid. The Ouzo droplet is able to form an oil ring that facilitates the droplet contraction to create a three-dimensional supraparticle. Using the Ouzo effect to …


A Hyperelastic Porous Media Framework For Ionic Polymer-Metal Composites And Characterization Of Transduction Phenomena Via Dimensional Analysis And Nonlinear Regression, Zakai J. Olsen May 2021

A Hyperelastic Porous Media Framework For Ionic Polymer-Metal Composites And Characterization Of Transduction Phenomena Via Dimensional Analysis And Nonlinear Regression, Zakai J. Olsen

UNLV Theses, Dissertations, Professional Papers, and Capstones

Ionic polymer-metal composites (IPMC) are smart materials that exhibit large deformation in response to small applied voltages, and conversely generate detectable electrical signals in response to mechanical deformations. The study of IPMC materials is a rich field of research, and an interesting intersection of material science, electrochemistry, continuum mechanics, and thermodynamics. Due to their electromechanical and mechanoelectrical transduction capabilities, IPMCs find many applications in robotics, soft robotics, artificial muscles, and biomimetics. This study aims to investigate the dominating physical phenomena that underly the actuation and sensing behavior of IPMC materials. This analysis is made possible by developing a new, hyperelastic …


Morphology Control Of One-Dimensional Gallium Nitride Nanostructures By Modulating The Crystallinity Of Sacrificial Gallium Oxide Templates, Yun Taek Ko, Mijeong Park, Jingyeong Park, Jaeyun Moon, Yong Ho Choa, Young In Lee Jan 2021

Morphology Control Of One-Dimensional Gallium Nitride Nanostructures By Modulating The Crystallinity Of Sacrificial Gallium Oxide Templates, Yun Taek Ko, Mijeong Park, Jingyeong Park, Jaeyun Moon, Yong Ho Choa, Young In Lee

Mechanical Engineering Faculty Research

In this study, we demonstrated a method of controllably synthesizing one-dimensional nanostructures having a dense or a hollow structure using fibrous sacrificial templates with tunable crystallinity. The fibrous ga2o3 templates were prepared by calcining the polymer/gallium precursor nanofiber synthesized by an electrospinning process, and their crystallinity was varied by controlling the calcination temperature from 500oC to 900oC. gaN nanostructures were transformed by nitriding the ga2o3 nanofibers using NH3 gas. All of the transformed gaN nanostructures maintained a one-dimensional structure well and exhibited a diameter of about 50 nm, but their morphology was clearly distinguished according to the crystallinity of the …


Direct Energy Deposition Of Mo Powder Prepared By Electrode Induction Melting Gas Atomization, Goo Won Roh, Eun Soo Park, Jaeyun Moon, Hojun Lee, Jongmin Byun Jan 2021

Direct Energy Deposition Of Mo Powder Prepared By Electrode Induction Melting Gas Atomization, Goo Won Roh, Eun Soo Park, Jaeyun Moon, Hojun Lee, Jongmin Byun

Mechanical Engineering Faculty Research

Molybdenum (Mo) is used to form a barrier layer for metal wiring in displays or semiconductor devices. Recently, researches have been continuously attempted to fabricate Mo sputtering targets through additive manufacturing. in this study, spherical Mo powders with an average particle size of about 37 um were manufactured by electrode induction melting gas atomization. Subsequently, Mo layer with a thickness of 0.25 mm was formed by direct energy deposition in which the scan speed was set as a variable. According to the change of the scan speed, pores or cracks were found in the Mo deposition layer. Mo layer deposited …


Design Of Efficient Carbon-Based Adsorbents For The Removal Of Organic And Inorganic Water Contaminants, Sayedeh Soroosh Mortazavian Dehkordi Dec 2019

Design Of Efficient Carbon-Based Adsorbents For The Removal Of Organic And Inorganic Water Contaminants, Sayedeh Soroosh Mortazavian Dehkordi

UNLV Theses, Dissertations, Professional Papers, and Capstones

Granular activated carbon (AC) and biochar (BC) are two carbon-based adsorbents commonly used for water and wastewater treatment. However, these adsorbents have drawbacks that suppress their aqueous contaminants removal efficiency. Their major disadvantages are that AC has low selectivity and reusability potential, and BC has a hydrophobic nature.

The scope of this dissertation is to enhance the performance of commonly-used carbon-based adsorbents for the removal of organic and inorganic water contaminants and to understand the interactive mechanism of contaminants’ ions/molecules with adsorbents. Hexavalent chromium (Cr(VI)) and trichloroethylene (TCE) are two types of inorganic and organic water contaminants, respectively, which are …


The Development Of A Viscoelastic Ellipsoidal Model For Use In Measuring Plantar Tissue Material Properties During Walking, Jessica Lee Deberardinis May 2019

The Development Of A Viscoelastic Ellipsoidal Model For Use In Measuring Plantar Tissue Material Properties During Walking, Jessica Lee Deberardinis

UNLV Theses, Dissertations, Professional Papers, and Capstones

Introduction: The mechanical characteristics of the plantar tissues during walking is not well understood as most of the current research focuses on testing specific plantar regions in cadavers or while the feet of the participants are raised. In this work, it is hypothesized that a viscoelastic geometric ellipsoid model used to assess multiple structures of the foot would be accurate and robust. This model would be participant-specific and applicable to the entire stance phase of gait.

Methods: The proposed viscoelastic ellipsoid model would represent several key anatomical areas: Heel, Posterior Midfoot, Anterior Midfoot, Metatarsals 1-2, Metatarsals 3-5, Toe 1, Toe …


Preliminary Investigation Of Tensile Strength And Impact Characterization Of Cementitious Composite Incorporating Carbon Nanotubes, Robabeh Jazaei May 2018

Preliminary Investigation Of Tensile Strength And Impact Characterization Of Cementitious Composite Incorporating Carbon Nanotubes, Robabeh Jazaei

UNLV Theses, Dissertations, Professional Papers, and Capstones

Cement has been largely used in the construction industry, specifically as a matrix for concrete. Recently, a new generation of cement-based composite that greatly increases mechanical properties is replacing conventional concrete. With periodic advances in the field, researchers considered particles with high-aspect ratios such as Carbon Nanotubes (CNTs) to reinforce cement matrices. Although there is not much literature to draw upon in research, some research on improving the tensile strength of cementitious composite incorporating with CNTs does exist. However, there had been no evidence of investigation into impact strength until this study.

Most papers presented examined the effect of multi-walled …


Effect Of Thermal Treatment On High Temperature Deformation Of Alloy Ep-~823, Martin Milburn Lewis May 2016

Effect Of Thermal Treatment On High Temperature Deformation Of Alloy Ep-~823, Martin Milburn Lewis

UNLV Theses, Dissertations, Professional Papers, and Capstones

The objective of this research topic is to determine mechanical properties of Alloy EP-823 and to provide a mechanistic understanding of its sensitivity to both thermal treatment and performance temperature. EP-823 is a leading target material for accelerator-driven waste transmutation applications. Overall, the tensile test results of Alloy EP-823 indicated a general trend of decreasing mechanical performance with an increase in tempering time. An increase in tempering time had a statistically significant inverse relationship with ultimate tensile strength (UTS) and yield strength (YS). An increase in tempering time did not have a significant effect on elongation and reduction in area. …


An Approach To Model Plastic Deformation Of Metallic Plates In Hypervelocity Impact Experiments, Shawoon Kumar Roy Dec 2015

An Approach To Model Plastic Deformation Of Metallic Plates In Hypervelocity Impact Experiments, Shawoon Kumar Roy

UNLV Theses, Dissertations, Professional Papers, and Capstones

Space structures are subjected to micro-meteorite impact at extremely high velocities of several kilometers per second. Similarly, design of military equipment requires understanding of material behavior under extremely high pressure and temperature. Study of material behavior under hypervelocity impact (HVI) poses many challenges since few researchers so far have approached this problem. Material models, equations of the state, and fracture mechanics are not well understood under these conditions.

The objective of this research is to present an approach for studying plastic deformation of metallic plates under HVI conditions. A two-stage light gas gun can be used to simulate these conditions …


Feasibility Study Of Custom Manufacturing Of Ionic Polymer-Metal Composite Sensors, Shelby E. Nelson Aug 2015

Feasibility Study Of Custom Manufacturing Of Ionic Polymer-Metal Composite Sensors, Shelby E. Nelson

UNLV Theses, Dissertations, Professional Papers, and Capstones

The ability to create an ion exchange membrane with any shape or thickness through custom manufacturing techniques is highly desirable in ionic polymer-metal composite (IPMC) research. This is caused by the poor selection and limited availability of certain thicknesses of commercial ion exchange membranes. The objective of this study is to determine the feasibility of manufacturing custom ion exchange membranes for IPMC sensors. The manufacturing methods used in this study are extrusion, injection molding, and hot pressing. A commercial membrane from Golden Energy Fuel Cells (GEFC) is used as a comparison. After the membranes are fabricated, certain properties of the …


Analytical And Experimental Analysis Of Magnetorheological Elastomers, Sarah Trabia Aug 2014

Analytical And Experimental Analysis Of Magnetorheological Elastomers, Sarah Trabia

UNLV Theses, Dissertations, Professional Papers, and Capstones

Many engineering applications ranging from robotic joints to shock and vibration mitigation can benefit by incorporating components with variable stiffness. In addition, variable stiffness structures can provide haptic feedback (the sense of touch) to the user. In this work, it is proposed to study Magnetorheological Elastomers (MRE), where iron particles within the elastomer compound develop a dipole interaction energy, to be used in a device for haptic feedback. A novel feature of this MRE device is to introduce a field-induced variable shear modulus bias via a permanent magnet and using a current input to the electromagnetic control coil to change …


3d Modeling And Design Optimization Of Rod Shaped Ionic Polymer Metal Composite Actuator, Siul A. Ruiz Aug 2013

3d Modeling And Design Optimization Of Rod Shaped Ionic Polymer Metal Composite Actuator, Siul A. Ruiz

UNLV Theses, Dissertations, Professional Papers, and Capstones

Ionic polymer-metal composites (IPMCs) are some of the most well-known electro-active polymers. This is due to their large deformation provided a relatively low voltage source. IPMCs have been acknowledged as a potential candidate for biomedical applications such as cardiac catheters and surgical probes; however, there is still no existing mass manufacturing of IPMCs. This study intends to provide a theoretical framework which could be used to design practical purpose IPMCs depending on the end users interest.

This study begins by investigating methodologies used to develop quantify the physical actuation of an IPMC in 3-dimensional space. This approach is taken in …


College Of Engineering Senior Design Competition Spring 2013, University Of Nevada, Las Vegas May 2013

College Of Engineering Senior Design Competition Spring 2013, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Senior Design Experience

Part of every UNLV engineering student's academic experience, the Senior Design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs and prototypes a product in this required element of the curriculum. Working in teams, the senior design project encourages students to use everything learned in the engineering and computer design programs to create a practical, real world solution to an engineering challenge.

Beyond the classroom ...

Because of the requirement to work in teams, students also build good communication skills, presentation skills and even business writing skills. They also have to …


Design And Testing Of Novel Mouthguard With Intermediate Nitinol And Foam Layers, Adam Kessler May 2013

Design And Testing Of Novel Mouthguard With Intermediate Nitinol And Foam Layers, Adam Kessler

UNLV Theses, Dissertations, Professional Papers, and Capstones

It is the aim of this study to investigate a novel mouthguard design that incorporates the use of a nickel-titanium (Nitinol) layer and thin foam layer in addition to EVA layers. It is thought that the Nitinol layer can distribute the force of an impact and that the thin foam layer may absorb this distributed force better than a solid EVA mouthguard of the same thickness. Rectangular, flat coupons representative of several mouthguard configurations were constructed for testing using an instrumented drop-weight impact tower. The coupon configurations include a control made of laminated EVA, a group of laminated EVA and …


Closed Loop Control Of A Cylindrical Tube Type Ionic Polymer Metal Composite (Ipmc), Benjamin Mead May 2013

Closed Loop Control Of A Cylindrical Tube Type Ionic Polymer Metal Composite (Ipmc), Benjamin Mead

UNLV Theses, Dissertations, Professional Papers, and Capstones

The goal of this research is to provide a framework for the integration of tube type, cylindrical Ionic Polymer Metal-Composite (IPMC) into conventional devices. IPMCs are one of the most widely used types of electro-active polymer actuator, due to their low electric driving potential and large deformation range. For this research a tube type IPMC was investigated. This IPMC has a circular cross section with four separate electrodes on its surface and a hole through the middle. The four electrodes allow for biaxial bending and accurate control of the tip location. One of the main advantages of using this type …


Hydraulic And Thermal Performances Of A High Temperature Ceramic Plate-Fin Heat Exchanger (Pfhe), Vijaisri Nagarajan, Yitung Chen, Qiuwang Wang, Ting Ma Apr 2013

Hydraulic And Thermal Performances Of A High Temperature Ceramic Plate-Fin Heat Exchanger (Pfhe), Vijaisri Nagarajan, Yitung Chen, Qiuwang Wang, Ting Ma

College of Engineering: Graduate Celebration Programs

  • Numerical analysis was carried for novel configuration of high temperature PFHE
  • Fluid flow and heat transfer properties were studied for various fin configurations
  • Ripsaw fin design with thickness of 0.05 mm gives maximum heat transfer with less pressure drop and friction factor
  • Validation and parametric study were carried out for all fin configurations


Vulnerability Of Progressive Collapse In Reinforced Concrete Flat-Plate Buildings, Jinrong Liu Apr 2013

Vulnerability Of Progressive Collapse In Reinforced Concrete Flat-Plate Buildings, Jinrong Liu

College of Engineering: Graduate Celebration Programs

  • Progressive collapse is the spread of initial local failure, causing partial or
    even total collapse of a building.
  • Flat plate structure is widely used for office and residential buildings.
  • There is a large inventory of older flat plate building without continuous slab bottom reinforcement through columns.
  • Limited knowledge exists regarding the risk of disproportionate collapse in
    older flat-plates under sudden column removal during abnormal events.
  • Reliable mechanical model is needed for structural evaluation.


Plasma Test On Industrial Diamond Powder In Hydrogen And Air For Fracture Strength Study, Rohit Asuri Sudharshana Asuri Sudharshana Chary Dec 2012

Plasma Test On Industrial Diamond Powder In Hydrogen And Air For Fracture Strength Study, Rohit Asuri Sudharshana Asuri Sudharshana Chary

UNLV Theses, Dissertations, Professional Papers, and Capstones

Diamonds are the most precious material all over the world. Ever since their discovery, the desire for natural diamonds has been great; recently, the demand has steeply increased, leading to scarcity. For example, in 2010, diamonds worth $50 billion were marketed. This increased demand has led to discovering alternative sources to replace diamonds. The diamond, being the hardest material on earth, could be replaced with no other material except another diamond. Thus, the industrial or synthetic diamond was invented. Because of extreme hardness is one of diamond's properties, diamonds are used in cutting operations. The fracture strength of diamond is …


Modeling Of A Novel Solar Down Beam Test Facility Utilizing Newtonian Optics, Ryan J. Hoffmann Dec 2011

Modeling Of A Novel Solar Down Beam Test Facility Utilizing Newtonian Optics, Ryan J. Hoffmann

UNLV Theses, Dissertations, Professional Papers, and Capstones

As advances in concentrated solar energy progress there will inevitably be an increase in the demand of resources for testing new conceptions. Currently, there are limited facilities available for taking concentrated solar energy concepts from the laboratory bench scale to the engineering test scale. A proposed solution is a scientific and developmental facility that provides highly concentrated solar energy at ground level. The design presented is a solar down beam test facility utilizing a Newtonian optics approach with a flat rectangular down beam mirror to reflect and concentrate the sun's rays at ground level.

Literature review suggests a hyperbolic reflector …


Modeling And Control Of A Flexible Ionic Polymer Metal Composite(Ipmc) Actuator For Underwater Propulsion, Shivakanth Gutta Dec 2011

Modeling And Control Of A Flexible Ionic Polymer Metal Composite(Ipmc) Actuator For Underwater Propulsion, Shivakanth Gutta

UNLV Theses, Dissertations, Professional Papers, and Capstones

The goal of this research is to model and control the underwater vehicle propelled by IPMC actuator. IPMC consists of an ionic membrane sandwiched between two metallic electrodes. When an external voltage is applied, IPMC undergoes large deformation due to transport of ions. Due to its ability to work in aqueous environments, it can be used for developing small scale underwater vehicles.

First, Finite element approach is used to describe the dynamics of the both single and segmented IPMC actuator. In the approach presented, each element is attached with a local coordinate system that undergoes rigid body motion along with …


Time-Dependent Crack Growth Behavior Of Alloy 617 And Alloy 230 At Elevated Temperatures, Shawoon Kumar Roy Aug 2011

Time-Dependent Crack Growth Behavior Of Alloy 617 And Alloy 230 At Elevated Temperatures, Shawoon Kumar Roy

UNLV Theses, Dissertations, Professional Papers, and Capstones

Two Ni-base solid-solution-strengthened superalloys: INCONEL 617 and HAYNES 230 were studied to check sustained loading crack growth (SLCG) behavior at elevated temperatures appropriate for Next Generation Nuclear Plant (NGNP) applictaions with constant stress intensity factor (K max = 27.75 MPa[checkmark]m) in air. The results indicate a time-dependent rate controlling process which can be characterized by a linear elastic fracture mechanics (LEFM) parameter - stress intensity factor (K). At elevated temperatures, the crack growth mechanism was best described using a damage zone concept. Based on results and study, SAGBOE (stress accelerated grain boundary oxidation embrittlement) is considered the primary reason for …


Immersion Cooling Of Photovoltaic Cells In Highly Concentrated Solar Beams, Ahmed Darwish Aug 2011

Immersion Cooling Of Photovoltaic Cells In Highly Concentrated Solar Beams, Ahmed Darwish

UNLV Theses, Dissertations, Professional Papers, and Capstones

Concentrated solar radiation can be utilized to generate electrical power from photovoltaic cells, but concentrated solar radiation increases the photovoltaic cell’s temperature. This increase in temperature can lead to degradation of the cell efficiency, and too high of a temperature can damage the cell’s integrity. This is particularly important in dish and tower systems where a maximum uniform flux may be difficult to achieve. While a variety of approaches have been used to the keep the cells cool, most are based upon removal of heat from the back (opposite surface of the incident flux exposed surface) of the cell. This …


Peripheral Soldering Of Flip Chip Joints On Passive Rfid Tags, Md Syful Islam May 2011

Peripheral Soldering Of Flip Chip Joints On Passive Rfid Tags, Md Syful Islam

UNLV Theses, Dissertations, Professional Papers, and Capstones

Flip chip is the main component of a RFID tag. It is used in billions each year in electronic packaging industries because of its small size, high performance and reliability as well as low cost. They are used in microprocessors, cell phones, watches and automobiles. RFID tags are applied to or incorporated into a product, animal, or person for identification and tracking using radio waves. Some tags can be read from several meters away or even beyond the line of sight of the reader. Passive RFID tags are the most common type in use that employ external power source to …


Long Term Outdoor Testing Of Low Concentration Solar Modules, Lewis Fraas, James Avery, Leonid Minkin, H. X. Huang, Tim Hebrink, Robert F. Boehm Apr 2011

Long Term Outdoor Testing Of Low Concentration Solar Modules, Lewis Fraas, James Avery, Leonid Minkin, H. X. Huang, Tim Hebrink, Robert F. Boehm

Mechanical Engineering Faculty Research

A 1‐axis carousel tracker equipped with four 3‐sun low‐concentration mirror modules has now been under test outdoors at the University of Nevada in Las Vegas (UNLV) for three years. There are three unique features associated with this unit. First, simple linear mirrors are used to reduce the amount of expensive single crystal silicon in order to potentially lower the module cost while potentially maintaining cell efficiencies over 20% and high module efficiency. Simple linear mirrors also allow the use of a single axis tracker. Second, the azimuth carousel tracker is also unique allowing trackers to be used on commercial building …


College Of Engineering Senior Design Competition Fall 2010, University Of Nevada, Las Vegas Dec 2010

College Of Engineering Senior Design Competition Fall 2010, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Part of every UNLV engineering student’s academic experience, the senior design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. A capstone to the student’s educational career, the senior design project encourages the student to use everything learned in the engineering program to create a practical, real world solution to an engineering challenge.

The senior design competition helps to focus the senior students in increasing the quality and potential for commercial application for their design projects. Judges from local industry evaluate the projects …


Mechanical Behavior Of Alloy 230 At Temperatures Relevant To Ngnp Program, Sudin Chatterjee May 2010

Mechanical Behavior Of Alloy 230 At Temperatures Relevant To Ngnp Program, Sudin Chatterjee

UNLV Theses, Dissertations, Professional Papers, and Capstones

Identification and selection of suitable structural materials for heat exchanger application within the purview of the next generation nuclear plant (NGNP) program constitute a major challenge. This challenge stems from the lack of many desired metallurgical and mechanical properties of conventional metallic materials and alloys for applications at temperatures approaching 950 oC. Nickel (Ni)-base Alloy 230 has been highly recommended as a suitable structural material for such application due to its excellent resistance to high-temperature plastic deformation and superior corrosion resistance in many hostile environments. Systematic studies on tensile, fracture toughness, creep, stress-rupture and creep-fatigue behavior of this alloy have …


Doppler Broadening Analysis Of Steel Specimens Using Accelerator Based In Situ Pair Production, V. Makarashvili, Douglas P. Wells, Ajit K. Roy Aug 2009

Doppler Broadening Analysis Of Steel Specimens Using Accelerator Based In Situ Pair Production, V. Makarashvili, Douglas P. Wells, Ajit K. Roy

Mechanical Engineering Faculty Research

Positron Annihilation Spectroscopy (PAS) techniques can be utilized as a sensitive probe of defects in materials. Studying these microscopic defects is very important for a number of industries in order to predict material failure or structural integrity. We have been developing gamma‐induced pair‐production techniques to produce positrons in thick samples ( ∼4–40 g/cm2, or ∼0.5–5 cm in steel). These techniques are called ‘Accelerator‐based Gamma‐induced Positron Annihilation Spectroscopy’ (AG‐PAS). We have begun testing the capabilities of this technique for imaging of defect densities in thick structural materials. As a first step, a linear accelerator (LINAC) was employed to produce photon beams …


Modulated Nanopores Using Pulse Anodization On Thin Aluminum, Mahesh Babu Gunukula May 2009

Modulated Nanopores Using Pulse Anodization On Thin Aluminum, Mahesh Babu Gunukula

UNLV Theses, Dissertations, Professional Papers, and Capstones

Nanoporous anodic aluminum oxide has traditionally been made in one of two ways: "Mild Anodization (MA)" or "Hard Anodization (HA)". The former method produces self-ordered pore structures but it is slow and only works for a narrow range of processing conditions; the latter method, which is widely used in the aluminum industry, is faster but it produces films with disordered pore structures. Here we report a novel approach termed "pulse anodization" that combines the advantages of the MA and HA processes. By designing the pulse sequences it is possible to control both the composition and pore structure of the anodic …