Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

Novel Locomotion Methods In Magnetic Actuation And Pipe Inspection, Adam Cox Dec 2022

Novel Locomotion Methods In Magnetic Actuation And Pipe Inspection, Adam Cox

Mechanical Engineering Research Theses and Dissertations

There is much room for improvement in tube network inspections of jet aircraft. Often, these inspections are incomplete and inconsistent. In this paper, we develop a Modular Robotic Inspection System (MoRIS) for jet aircraft tube networks and a corresponding kinematic model. MoRIS consists of a Base Station for user control and communication, and robotic Vertebrae for accessing and inspecting the network. The presented and tested design of MoRIS can travel up to 9 feet in a tube network. The Vertebrae can navigate in all orientations, including smooth vertical tubes. The design is optimized for nominal 1.5" outside diameter tubes. We …


Magnetic Gradient-Based Magnetic Tweezer System For 3d And Swarm Control Of Microswimmer, Xiao Zhang May 2021

Magnetic Gradient-Based Magnetic Tweezer System For 3d And Swarm Control Of Microswimmer, Xiao Zhang

Mechanical Engineering Research Theses and Dissertations

Microscale manipulation has very promising potential in medical applications such as drug delivery, minimal and invasion surgery. Contactless control is preferable as remote manipulation is necessary for in vivo applications. Among different control methods, magnetic power source is more suitable and robust for the applications mentioned above. Presented here is a magnetic tweezer system, which manipulates microscale magnetic particles using magnetic forces created by magnetic field gradient. The proposed system has three advantages: First, force applied by the magnetic tweezer system does not contact with the target object and can be generated in different directions. Second, the magnetic tweezer system …


Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, Jungsoo Lee Dec 2020

Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, Jungsoo Lee

Multidisciplinary Studies Theses and Dissertations

Accomplishing slow translocation speed with high sensitivity has been the greatest mission for solid-state nanopore (SSN) to electrically detect nucleobases in single-stranded DNA (ssDNA). In this study, a method to detect nucleobases in ssDNA using a SSN is introduced by considerably slowing down the translocation speed and effectively increasing its sensitivity. The ultra-thin titanium dioxide (TiO2) coated hexagonal boron nitride (h-BN) nanopore was fabricated, along with an ionic-liquid [bmim][PF6]/2.0 M KCl aqueous (cis/trans) interfacial system, to increase both the spatial and the temporal resolutions. As the ssDNA molecules entered the nanopore, a …


Control And Locomotion Of Inertially And Magnetically Actuated Multi-Scale Robotic Systems, Ehab Al Khatib May 2020

Control And Locomotion Of Inertially And Magnetically Actuated Multi-Scale Robotic Systems, Ehab Al Khatib

Mechanical Engineering Research Theses and Dissertations

In this research, two actuation systems were introduced, inertial and magnetic actuation. In the inertial actuation, the robot used the transfer of momentum to navigate, and this momentum could be generated by spinning masses and wheels. Recent studies in our System Laboratory proved that a wide range of inertially actuated locomotion systems could be generated. This can be achieved by using a family tree approach, starting from a very simple system, and progressively evolving it to more complex ones. The motion diversity of these robots inspired us to extend their locomotion from a macro scale to millimeter and micro scales. …


Stability Analysis, Dynamic Modeling, And Kinematic Analysis Of Hydraulically Amplified Dielectric Elastomer Actuators And Robot Manipulators, Amir Hosein Zamanian Apr 2020

Stability Analysis, Dynamic Modeling, And Kinematic Analysis Of Hydraulically Amplified Dielectric Elastomer Actuators And Robot Manipulators, Amir Hosein Zamanian

Mechanical Engineering Research Theses and Dissertations

In this dissertation, we have proposed a new dielectric elastomer actuator design and model that couples electrostatics, fluid mechanics, linear and nonlinear elastic deformations. The internal hydraulic pressure can amplify the structural deformation generated by induced electrostatic forces (Maxwell pressure), given the name of this class of actuators, hydraulically amplified dielectric elastomer actuators (HADEAs).

First, we developed novel lumped-parameter models (LPMs) using linear and hyper-elastic material models and second compared the LPM results with finite element analysis in quasi-static simulations. We analytically expressed the conditions for the snap-through instability in the HADEA, which appears after exceeding a certain voltage applied …


Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu Aug 2019

Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu

Mechanical Engineering Research Theses and Dissertations

My research focuses on electrokinetic transport. Particularly, in this dissertation, we focus on fabrication and testing of micro electrodes with nanostructured surfaces to minimize the electrode polarization (EP) effects for biosensor applications. In the first study, electrochemical deposition of gold nanoparticles on to planar gold electrodes was used to generate rough surfaces. Dendritic nanostructures that reduced EP up to two orders of magnitude was obtained by optimizing the deposition conditions. These structures also enhanced dielectrophoresis (DEP) response of our bio-chips, making them usable in physiological buffers. In further studies we discovered a universal scaling of EP in the frequency domain, …


A Microresonator-Based Laser Doppler Velocity Sensor For Interplanetary Atmospheric Re-Entry, Benjamin Wise May 2018

A Microresonator-Based Laser Doppler Velocity Sensor For Interplanetary Atmospheric Re-Entry, Benjamin Wise

Mechanical Engineering Research Theses and Dissertations

In this thesis, a laser velocity sensor concept based on optical microresonators is presented and the application to spacecraft atmospheric entry is explored. The concept is based on the measurement of Doppler shift of back-scattered laser light. Specifically, the Doppler shift is detected by observing the whispering gallery optical modes (WGM) of a dielectric microresonator excited by the back scattered light from particulates and gas molecules. The microresonator replaces the typical Fabry-Perot interferometer and CCD camera system, thereby significantly reducing the size and weight of the overall detection system. This thesis presents proof-of-concept results for this measurement approach. The Doppler …