Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

SelectedWorks

Selected Works

2013

Synthesis (chemical)

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Synthesis And Growth Kinetics Of Spindly Cuo Nanocrystals Via Pulsed Wire Explosion In Liquid Medium Jan 2013

Synthesis And Growth Kinetics Of Spindly Cuo Nanocrystals Via Pulsed Wire Explosion In Liquid Medium

A.S. Md Abdul Haseeb

One-dimensional CuO nanocrystals with spindly structure were successfully synthesized using pulsed wire explosion technique in deionized water. By modulating the exploding medium temperature spherical Cu nanoparticles and one-dimensional CuO nanocrystals can be selectively synthesized. At low temperature (1 C) the particle growth is governed by Ostwald ripening resulting in formation of equidimensional crystals (spherical). As the exploding temperature increases (60 C), oriented aggregation in a preferential direction resulted in unique spindly nanostructure. A possible crystal growth mechanism for these nanostructures with various morphologies at different exploding temperature is proposed. Particle growth by Ostwald ripening or orientated aggregation is highly dependent …


Synthesis And Growth Kinetics Of Spindly Cuo Nanocrystals Via Pulsed Wire Explosion In Liquid Medium Jan 2013

Synthesis And Growth Kinetics Of Spindly Cuo Nanocrystals Via Pulsed Wire Explosion In Liquid Medium

A.S. Md Abdul Haseeb

One-dimensional CuO nanocrystals with spindly structure were successfully synthesized using pulsed wire explosion technique in deionized water. By modulating the exploding medium temperature spherical Cu nanoparticles and one-dimensional CuO nanocrystals can be selectively synthesized. At low temperature (1 C) the particle growth is governed by Ostwald ripening resulting in formation of equidimensional crystals (spherical). As the exploding temperature increases (60 C), oriented aggregation in a preferential direction resulted in unique spindly nanostructure. A possible crystal growth mechanism for these nanostructures with various morphologies at different exploding temperature is proposed. Particle growth by Ostwald ripening or orientated aggregation is highly dependent …