Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Mechanical Engineering

Markov Chain Monte Carlo-Based Method For Flaw Detection In Beams, Christopher Lee, Ronald Glaser, John Nitao, Tracy Hickling, William Hanley Apr 2012

Markov Chain Monte Carlo-Based Method For Flaw Detection In Beams, Christopher Lee, Ronald Glaser, John Nitao, Tracy Hickling, William Hanley

Christopher Lee

A Bayesian inference methodology using a Markov chain Monte Carlo (MCMC) sampling procedure is presented for estimating the parameters of computational structural models. This methodology combines prior information, measured data, and forward models to produce a posterior distribution for the system parameters of structural models that is most consistent with all available data. The MCMC procedure is based upon a Metropolis-Hastings algorithm that is shown to function effectively with noisy data, incomplete data sets, and mismatched computational nodes/measurement points. A series of numerical test cases based upon a cantilever beam is presented. The results demonstrate that the algorithm is able …


Nonlinear Dynamics And Loop Formation In Kirchoff Rods With Implications To The Mechanics Of Dna And Cables, Sachin Goyal, Noel Perkins, Christopher Lee Apr 2012

Nonlinear Dynamics And Loop Formation In Kirchoff Rods With Implications To The Mechanics Of Dna And Cables, Sachin Goyal, Noel Perkins, Christopher Lee

Christopher Lee

The paper contributes a general dynamical formulation and numerical solution procedure for studying nonlinear and three-dimensional dynamics of Kirchhoffrods. Target applications include the dynamic formation of DNA loops and supercoils as well as loops (hockles) in marine cables. The formulation accommodates non-homogeneous and non-isotropic inextensible rods both with and without coupling of tension and torsion. The utility of this formulation is illustrated by studying the dynamics and quasi-static response of a clamped–clamped rod subject to compression and/or twist. For slow loading rates, the computed quasi-static responses converge to published equilibrium solutions for a benchmark problem. As loading rates increase, new …


Fall 2010 Engr 3399: Mechanical And Aerospace Systems I: Course Material: Assignment 3, Christopher Lee Aug 2011

Fall 2010 Engr 3399: Mechanical And Aerospace Systems I: Course Material: Assignment 3, Christopher Lee

Christopher Lee

Techniques for the design and analysis of mechanical and aerospace systems are studied through case projects that involve both computational analysis and experimental measurements. Topics will be selected from a range of possible topics such as vibration analysis, flexible body dynamics, aerodynamics, and aeroelasticity. Projects may include the design and construction of vibration absorbers or ambient vibration energy harvesting systems, the dynamics and stability of aerospace vehicles, lift and drag of airfoils, the control of flutter instabilities of elastic structures, the design and flight testing of a lighter-than-air-vehicle, or mission planning of aeronautical or aerospace systems.


Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 7, Christopher Lee Aug 2011

Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 7, Christopher Lee

Christopher Lee

A student team will work in the manner of a small engineering research and development company to develop a mechanical or aerospace system to address a current market need. A comprehensive system design will be developed based upon quantitative analysis using commercial simulation software. Prototypes systems will be fabricated, evaluated and refined to meet performance objectives. This semester will focus on the design and fabrication of a 'perching' landing gear system for a small autonomous or remotely controlled air vehicle. The landing gear will enable the air vehicle to grab a hold of and land upon tree branches. Mechanical aspects …


Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 9, Christopher Lee Aug 2011

Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 9, Christopher Lee

Christopher Lee

A student team will work in the manner of a small engineering research and development company to develop a mechanical or aerospace system to address a current market need. A comprehensive system design will be developed based upon quantitative analysis using commercial simulation software. Prototypes systems will be fabricated, evaluated and refined to meet performance objectives. This semester will focus on the design and fabrication of a 'perching' landing gear system for a small autonomous or remotely controlled air vehicle. The landing gear will enable the air vehicle to grab a hold of and land upon tree branches. Mechanical aspects …


Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 4, Christopher Lee Aug 2011

Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 4, Christopher Lee

Christopher Lee

A student team will work in the manner of a small engineering research and development company to develop a mechanical or aerospace system to address a current market need. A comprehensive system design will be developed based upon quantitative analysis using commercial simulation software. Prototypes systems will be fabricated, evaluated and refined to meet performance objectives. This semester will focus on the design and fabrication of a 'perching' landing gear system for a small autonomous or remotely controlled air vehicle. The landing gear will enable the air vehicle to grab a hold of and land upon tree branches. Mechanical aspects …


Spring 2011: Engr 2320: Mechanics Of Solids And Structures: Information About Course: Course Syllabus, Christopher Lee Aug 2011

Spring 2011: Engr 2320: Mechanics Of Solids And Structures: Information About Course: Course Syllabus, Christopher Lee

Christopher Lee

This course covers the principles of statics of structures and mechanics of materials. The focus is on the concepts of stress and strain as related to applied loads (axial, shear, torsion, bending) and to resulting deformation. Students will learn how the principles of mechanics can be applied to mechanical design through modeling, quantitative analysis, strain gauge measurements, and computational simulation. The use of a commercial finite element package is introduced.


Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 5, Christopher Lee Aug 2011

Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 5, Christopher Lee

Christopher Lee

A student team will work in the manner of a small engineering research and development company to develop a mechanical or aerospace system to address a current market need. A comprehensive system design will be developed based upon quantitative analysis using commercial simulation software. Prototypes systems will be fabricated, evaluated and refined to meet performance objectives. This semester will focus on the design and fabrication of a 'perching' landing gear system for a small autonomous or remotely controlled air vehicle. The landing gear will enable the air vehicle to grab a hold of and land upon tree branches. Mechanical aspects …


Fall 2010 Engr 3399: Mechanical And Aerospace Systems I: Course Material: Hopper Assignment, Christopher Lee Aug 2011

Fall 2010 Engr 3399: Mechanical And Aerospace Systems I: Course Material: Hopper Assignment, Christopher Lee

Christopher Lee

Techniques for the design and analysis of mechanical and aerospace systems are studied through case projects that involve both computational analysis and experimental measurements. Topics will be selected from a range of possible topics such as vibration analysis, flexible body dynamics, aerodynamics, and aeroelasticity. Projects may include the design and construction of vibration absorbers or ambient vibration energy harvesting systems, the dynamics and stability of aerospace vehicles, lift and drag of airfoils, the control of flutter instabilities of elastic structures, the design and flight testing of a lighter-than-air-vehicle, or mission planning of aeronautical or aerospace systems.


Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 6, Christopher Lee Aug 2011

Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 6, Christopher Lee

Christopher Lee

A student team will work in the manner of a small engineering research and development company to develop a mechanical or aerospace system to address a current market need. A comprehensive system design will be developed based upon quantitative analysis using commercial simulation software. Prototypes systems will be fabricated, evaluated and refined to meet performance objectives. This semester will focus on the design and fabrication of a 'perching' landing gear system for a small autonomous or remotely controlled air vehicle. The landing gear will enable the air vehicle to grab a hold of and land upon tree branches. Mechanical aspects …


Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Information About Course: Course Schedule, Christopher Lee Aug 2011

Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Information About Course: Course Schedule, Christopher Lee

Christopher Lee

This course covers the principles of statics of structures and mechanics of materials. The focus is on the concepts of stress and strain as related to applied loads (axial, shear, torsion, bending) and to resulting deformation. Students will learn how the principles of mechanics can be applied to mechanical design through modeling, quantitative analysis, strain gauge measurements, and computational simulation. The use of a commercial finite element package is introduced.


Fall 2010 Engr 3399: Mechanical And Aerospace Systems I: Course Material: Assignment 8, Christopher Lee Aug 2011

Fall 2010 Engr 3399: Mechanical And Aerospace Systems I: Course Material: Assignment 8, Christopher Lee

Christopher Lee

Techniques for the design and analysis of mechanical and aerospace systems are studied through case projects that involve both computational analysis and experimental measurements. Topics will be selected from a range of possible topics such as vibration analysis, flexible body dynamics, aerodynamics, and aeroelasticity. Projects may include the design and construction of vibration absorbers or ambient vibration energy harvesting systems, the dynamics and stability of aerospace vehicles, lift and drag of airfoils, the control of flutter instabilities of elastic structures, the design and flight testing of a lighter-than-air-vehicle, or mission planning of aeronautical or aerospace systems.


Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Final Project Instructions, Christopher Lee Aug 2011

Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Final Project Instructions, Christopher Lee

Christopher Lee

This course covers the principles of statics of structures and mechanics of materials. The focus is on the concepts of stress and strain as related to applied loads (axial, shear, torsion, bending) and to resulting deformation. Students will learn how the principles of mechanics can be applied to mechanical design through modeling, quantitative analysis, strain gauge measurements, and computational simulation. The use of a commercial finite element package is introduced.


Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Robot Leg Exercise, Christopher Lee Aug 2011

Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Robot Leg Exercise, Christopher Lee

Christopher Lee

This course covers the principles of statics of structures and mechanics of materials. The focus is on the concepts of stress and strain as related to applied loads (axial, shear, torsion, bending) and to resulting deformation. Students will learn how the principles of mechanics can be applied to mechanical design through modeling, quantitative analysis, strain gauge measurements, and computational simulation. The use of a commercial finite element package is introduced.


Fall 2010 Engr 3399: Mechanical And Aerospace Systems I: Course Material: Assignment 5, Christopher Lee Aug 2011

Fall 2010 Engr 3399: Mechanical And Aerospace Systems I: Course Material: Assignment 5, Christopher Lee

Christopher Lee

Techniques for the design and analysis of mechanical and aerospace systems are studied through case projects that involve both computational analysis and experimental measurements. Topics will be selected from a range of possible topics such as vibration analysis, flexible body dynamics, aerodynamics, and aeroelasticity. Projects may include the design and construction of vibration absorbers or ambient vibration energy harvesting systems, the dynamics and stability of aerospace vehicles, lift and drag of airfoils, the control of flutter instabilities of elastic structures, the design and flight testing of a lighter-than-air-vehicle, or mission planning of aeronautical or aerospace systems.


Fall 2010 Engr 3399: Mechanical And Aerospace Systems I: Course Material: Assignment 2, Christopher Lee Aug 2011

Fall 2010 Engr 3399: Mechanical And Aerospace Systems I: Course Material: Assignment 2, Christopher Lee

Christopher Lee

Techniques for the design and analysis of mechanical and aerospace systems are studied through case projects that involve both computational analysis and experimental measurements. Topics will be selected from a range of possible topics such as vibration analysis, flexible body dynamics, aerodynamics, and aeroelasticity. Projects may include the design and construction of vibration absorbers or ambient vibration energy harvesting systems, the dynamics and stability of aerospace vehicles, lift and drag of airfoils, the control of flutter instabilities of elastic structures, the design and flight testing of a lighter-than-air-vehicle, or mission planning of aeronautical or aerospace systems.


Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Information About Course: Course Syllabus, Christopher Lee Aug 2011

Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Information About Course: Course Syllabus, Christopher Lee

Christopher Lee

A student team will work in the manner of a small engineering research and development company to develop a mechanical or aerospace system to address a current market need. A comprehensive system design will be developed based upon quantitative analysis using commercial simulation software. Prototypes systems will be fabricated, evaluated and refined to meet performance objectives. This semester will focus on the design and fabrication of a 'perching' landing gear system for a small autonomous or remotely controlled air vehicle. The landing gear will enable the air vehicle to grab a hold of and land upon tree branches. Mechanical aspects …


Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 1, Christopher Lee Aug 2011

Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 1, Christopher Lee

Christopher Lee

A student team will work in the manner of a small engineering research and development company to develop a mechanical or aerospace system to address a current market need. A comprehensive system design will be developed based upon quantitative analysis using commercial simulation software. Prototypes systems will be fabricated, evaluated and refined to meet performance objectives. This semester will focus on the design and fabrication of a 'perching' landing gear system for a small autonomous or remotely controlled air vehicle. The landing gear will enable the air vehicle to grab a hold of and land upon tree branches. Mechanical aspects …


Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Exam 1, Christopher Lee Aug 2011

Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Exam 1, Christopher Lee

Christopher Lee

This course covers the principles of statics of structures and mechanics of materials. The focus is on the concepts of stress and strain as related to applied loads (axial, shear, torsion, bending) and to resulting deformation. Students will learn how the principles of mechanics can be applied to mechanical design through modeling, quantitative analysis, strain gauge measurements, and computational simulation. The use of a commercial finite element package is introduced.


Fall 2010 Engr 3399: Mechanical And Aerospace Systems I: Course Material: Assignment 7, Christopher Lee Aug 2011

Fall 2010 Engr 3399: Mechanical And Aerospace Systems I: Course Material: Assignment 7, Christopher Lee

Christopher Lee

Techniques for the design and analysis of mechanical and aerospace systems are studied through case projects that involve both computational analysis and experimental measurements. Topics will be selected from a range of possible topics such as vibration analysis, flexible body dynamics, aerodynamics, and aeroelasticity. Projects may include the design and construction of vibration absorbers or ambient vibration energy harvesting systems, the dynamics and stability of aerospace vehicles, lift and drag of airfoils, the control of flutter instabilities of elastic structures, the design and flight testing of a lighter-than-air-vehicle, or mission planning of aeronautical or aerospace systems.


Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Final Exam, Christopher Lee Aug 2011

Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Final Exam, Christopher Lee

Christopher Lee

This course covers the principles of statics of structures and mechanics of materials. The focus is on the concepts of stress and strain as related to applied loads (axial, shear, torsion, bending) and to resulting deformation. Students will learn how the principles of mechanics can be applied to mechanical design through modeling, quantitative analysis, strain gauge measurements, and computational simulation. The use of a commercial finite element package is introduced.


Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 3, Christopher Lee Aug 2011

Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 3, Christopher Lee

Christopher Lee

A student team will work in the manner of a small engineering research and development company to develop a mechanical or aerospace system to address a current market need. A comprehensive system design will be developed based upon quantitative analysis using commercial simulation software. Prototypes systems will be fabricated, evaluated and refined to meet performance objectives. This semester will focus on the design and fabrication of a 'perching' landing gear system for a small autonomous or remotely controlled air vehicle. The landing gear will enable the air vehicle to grab a hold of and land upon tree branches. Mechanical aspects …


Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Exam 2, Christopher Lee Aug 2011

Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Exam 2, Christopher Lee

Christopher Lee

This course covers the principles of statics of structures and mechanics of materials. The focus is on the concepts of stress and strain as related to applied loads (axial, shear, torsion, bending) and to resulting deformation. Students will learn how the principles of mechanics can be applied to mechanical design through modeling, quantitative analysis, strain gauge measurements, and computational simulation. The use of a commercial finite element package is introduced.


Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 8, Christopher Lee Aug 2011

Spring 2011 Engr 3399: Mechanical And Aerospace Systems Ii: Course Materials: Assignment 8, Christopher Lee

Christopher Lee

A student team will work in the manner of a small engineering research and development company to develop a mechanical or aerospace system to address a current market need. A comprehensive system design will be developed based upon quantitative analysis using commercial simulation software. Prototypes systems will be fabricated, evaluated and refined to meet performance objectives. This semester will focus on the design and fabrication of a 'perching' landing gear system for a small autonomous or remotely controlled air vehicle. The landing gear will enable the air vehicle to grab a hold of and land upon tree branches. Mechanical aspects …