Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

PDF

Computer Engineering

Keyword
Publication Year
Publication

Articles 1 - 29 of 29

Full-Text Articles in Mechanical Engineering

Developing A Workflow To Integrate Tree Inventory Data Into Urban Energy Models, Farzad Hashemi, Breanna L. Marmur, Ulrike Passe, Janette R. Thompson Jun 2019

Developing A Workflow To Integrate Tree Inventory Data Into Urban Energy Models, Farzad Hashemi, Breanna L. Marmur, Ulrike Passe, Janette R. Thompson

Farzad Hashemi

Building energy simulation is of considerable interest and benefit for architects, engineers, and urban planners. Only recently has it become possible to develop integrated energy models for clusters of buildings in urban areas. Simulating energy consumption of the built environment on a relatively large scale (e.g., such as a neighborhood) will be necessary to obtain more reliable results, since building energy parameters are influenced by characteristics of the nearby environment. Therefore, the construction of a 3-D model of urban built areas with detail of the near-building environment should enhance simulation approaches and provide more accurate results. This paper describes the …


The Subject Librarian Newsletter, Engineering And Computer Science, Spring 2018, Buenaventura "Ven" Basco Oct 2018

The Subject Librarian Newsletter, Engineering And Computer Science, Spring 2018, Buenaventura "Ven" Basco

Buenaventura "Ven" Basco

No abstract provided.


The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco Oct 2018

The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco

Buenaventura "Ven" Basco

No abstract provided.


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Jul 2013

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Abhijit Saxena

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


Sugarmap: Location-Less Coverage For Micro-Aerial Sensing Swarms, Aveek Purohit, Zheng Sun, Pei Zhang Apr 2013

Sugarmap: Location-Less Coverage For Micro-Aerial Sensing Swarms, Aveek Purohit, Zheng Sun, Pei Zhang

Zheng Sun

No abstract provided.


Haptography: Capturing And Recreating The Rich Feel Of Real Surfaces, Katherine J. Kuchenbecker, Joseph Romano, William Mcmahan Mar 2013

Haptography: Capturing And Recreating The Rich Feel Of Real Surfaces, Katherine J. Kuchenbecker, Joseph Romano, William Mcmahan

William McMahan

Haptic interfaces, which allow a user to touch virtual and remote environments through a hand-held tool, have opened up exciting new possibilities for applications such as computer-aided design and robot-assisted surgery. Unfortunately, the haptic renderings produced by these systems seldom feel like authentic re-creations of the richly varied surfaces one encounters in the real world. We have thus envisioned the new approach of haptography, or haptic photography, in which an individual quickly records a physical interaction with a real surface and then recreates that experience for a user at a different time and/or place. This paper presents an overview of …


Robust Course-Boundary Extraction Algorithms For Autonomous Vehicles, Chris Roman, Charles Reinholtz Jan 2013

Robust Course-Boundary Extraction Algorithms For Autonomous Vehicles, Chris Roman, Charles Reinholtz

Christopher N. Roman

Practical autonomous robotic vehicles require dependable methods for accurately identifying course or roadway boundaries. The authors have developed a method to reliably extract the boundary line using simple dynamic thresholding, noise filtering, and blob removal. This article describes their efforts to apply this procedure in developing an autonomous vehicle.


Autonomous Underwater Vehicles As Tools For Deep-Submergence Archaeology, Christopher N. Roman, Ian Roderick Mather Jan 2013

Autonomous Underwater Vehicles As Tools For Deep-Submergence Archaeology, Christopher N. Roman, Ian Roderick Mather

Christopher N. Roman

Marine archaeology beyond the capabilities of scuba divers is a technologically enabled field. The tool suite includes ship-based systems such as towed side-scan sonars and remotely operated vehicles, and more recently free-swimming autonomous underwater vehicles (AUVs). Each of these platforms has various imaging and mapping capabilities appropriate for specific scales and tasks. Broadly speaking, AUVs are becoming effective tools for locating, identifying, and surveying archaeological sites. This paper discusses the role of AUVs in this suite of tools, outlines some specific design criteria necessary to maximize their utility in the field, and presents directions for future developments. Results are presented …


Development Of A New Lagrangian Float For Studying Coastal Marine Ecosystems, Alex Schwithal, Chris Roman Jan 2013

Development Of A New Lagrangian Float For Studying Coastal Marine Ecosystems, Alex Schwithal, Chris Roman

Christopher N. Roman

This paper presents an overview and initial testing results for a shallow water Lagrangian float designed to operate in coastal settings. The presented effort addresses the two main characteristics of the shallow coastal environment that preclude the direct of use of many successfully deep water floats, namely the higher variation of water densities near the coast compared with the open ocean and the highly varied bathymetry. Our idea is to develop a high capacity dynamic auto-ballasting system that is able to compensate for the expected seawater density variation over a broad range of water temperatures and salinities while using measurements …


Deep Sea Underwater Robotic Exploration In The Ice-Covered Arctic Ocean With Auvs, Clayton Kunz, Chris Murphy, Richard Camilli, Hanumant Singh, John Bailey, Ryan M. Eustice, Chris Roman, Michael Jakuba, Claire Willis, Taichi Sato, Ko-Ichi Nakamura, Robert A. Sohn Jan 2013

Deep Sea Underwater Robotic Exploration In The Ice-Covered Arctic Ocean With Auvs, Clayton Kunz, Chris Murphy, Richard Camilli, Hanumant Singh, John Bailey, Ryan M. Eustice, Chris Roman, Michael Jakuba, Claire Willis, Taichi Sato, Ko-Ichi Nakamura, Robert A. Sohn

Christopher N. Roman

The Arctic seafloor remains one of the last unexplored areas on Earth. Exploration of this unique environment using standard remotely operated oceanographic tools has been obstructed by the dense Arctic ice cover. In the summer of 2007 the Arctic Gakkel Vents Expedition (AGAVE) was conducted with the express intention of understanding aspects of the marine biology, chemistry and geology associated with hydrothermal venting on the section of the mid-ocean ridge known as the Gakkel Ridge. Unlike previous research expeditions to the Arctic the focus was on high resolution imaging and sampling of the deep seafloor. To accomplish our goals we …


Application Of Structured Light Imaging For High Resolution Mapping Of Underwater Archaeological Sites, Chris Roman, Gabrielle Inglis, James Rutter Dec 2012

Application Of Structured Light Imaging For High Resolution Mapping Of Underwater Archaeological Sites, Chris Roman, Gabrielle Inglis, James Rutter

Christopher N. Roman

This paper presents results from recent work using structured light laser profile imaging to create high resolution bathymetric maps of underwater archaeological sites. Documenting the texture and structure of submerged sites is a difficult task and many applicable acoustic and photographic mapping techniques have recently emerged. This effort was completed to evaluate laser profile imaging in comparison to stereo imaging and high frequency multibeam mapping. A ROV mounted camera and inclined 532 nm sheet laser were used to create profiles of the bottom that were then merged into maps using platform navigation data. These initial results show very promising resolution …


The 2005 Chios Ancient Shipwreck Survey: New Methods For Underwater Archaeology, Brendan P. Foley, Katerina Dellaporta, Dimitris Sakellariou, Brian S. Bingham, Richard Camilli, Ryan M. Eustice, Dionysis Evagelistis, Vicki Lynn Ferrini, Kostas Katsaros, Dimitris Kourkoumelis, Aggelos Mallios, Paraskevi Micha, David A. Mindell, Christopher Roman, Hanumant Singh, David S. Switzer, Theotokis Theodoulou Dec 2012

The 2005 Chios Ancient Shipwreck Survey: New Methods For Underwater Archaeology, Brendan P. Foley, Katerina Dellaporta, Dimitris Sakellariou, Brian S. Bingham, Richard Camilli, Ryan M. Eustice, Dionysis Evagelistis, Vicki Lynn Ferrini, Kostas Katsaros, Dimitris Kourkoumelis, Aggelos Mallios, Paraskevi Micha, David A. Mindell, Christopher Roman, Hanumant Singh, David S. Switzer, Theotokis Theodoulou

Christopher N. Roman

In 2005 a Greek and American interdisciplinary team investigated two ship wrecks off the coast of Chios dating to the 4th-century B.C. and the 2nd/lst century. The project pioneered archaeological methods of precision acoustic, digital image, and chemical survey using an autonomous underwater vehicle (AUV) and in-situ sensors, increasing the speed of data acquisition while decreasing costs. The AUV recorded data revealing the physical dimensions, age, cargo, and preservation of the wrecks. The earlier wreck contained more than 350 amphoras, predominantly of Chian type, while the Hellenistic wreck contained about 40 Dressel 1C amphoras. Molecular biological analysis of two amphoras …


Polaris: Getting Accurate Indoor Orientations For Mobile Devices Using Ubiquitous Visual Patterns On Ceilings, Zheng Sun Feb 2012

Polaris: Getting Accurate Indoor Orientations For Mobile Devices Using Ubiquitous Visual Patterns On Ceilings, Zheng Sun

Zheng Sun

Ubiquitous computing applications commonly use digital compass sensors to obtain orientation of a device relative to the magnetic north of the earth. However, these compass readings are always prone to significant errors in indoor environments due to presence of metallic objects in close proximity. Such errors can adversely affect the performance and quality of user experience of the applications utilizing digital compass sensors.

In this paper, we propose Polaris, a novel approach to provide reliable orientation information for mobile devices in indoor environments. Polaris achieves this by aggregating pictures of the ceiling of an indoor environment and applies computer vision …


Remote Analysis Of Grain Size Characteristic In Submarine Pyroclastic Deposits From Kolumbo Volcano, Greece, C. Smart, D. P. Whitesell, C. Roman, S. Carey Dec 2011

Remote Analysis Of Grain Size Characteristic In Submarine Pyroclastic Deposits From Kolumbo Volcano, Greece, C. Smart, D. P. Whitesell, C. Roman, S. Carey

Christopher N. Roman

Grain size characteristics of pyroclastic deposits provide valuable information about source eruption energetics and depositional processes. Maximum size and sorting are often used to discriminate between fallout and sediment gravity flow processes during explosive eruptions. In the submarine environment the collection of such data in thick pyroclastic sequences is extremely challenging and potentially time consuming. A method has been developed to extract grain size information from stereo images collected by a remotely operated vehicle (ROV). In the summer of 2010 the ROV Hercules collected a suite of stereo images from a thick pumice sequence in the caldera walls of Kolumbo …


Detection Of Diffuse Sea Floor Venting Using Structured Light Imaging, G. Inglis, C. Smart, C. Roman, S. Carey Dec 2011

Detection Of Diffuse Sea Floor Venting Using Structured Light Imaging, G. Inglis, C. Smart, C. Roman, S. Carey

Christopher N. Roman

Efficiently identifying and localizing diffuse sea floor venting at hydrothermal and cold seep sites is often difficult. Actively venting fluids are usually identified by a temperature induced optical shimmering seen during direct visual inspections or in video data collected by vehicles working close to the sea floor. Relying on such direct methods complicates establishing spatial relations between areas within a survey covering a broad area. Our recent work with a structured light laser system has shown that venting can also be detected in the image data in an automated fashion. A structured light laser system consists of a camera and …


Pandaa: Physical Arrangement Detection Of Networked Devices Through Ambient-Sound Awareness, Zheng Sun, Aveek Purohit, Kaifei Chen, Shijia Pan, Trevor Pering, Pei Zhang Sep 2011

Pandaa: Physical Arrangement Detection Of Networked Devices Through Ambient-Sound Awareness, Zheng Sun, Aveek Purohit, Kaifei Chen, Shijia Pan, Trevor Pering, Pei Zhang

Zheng Sun

Future ubiquitous home environments can contain 10s or 100s of devices. Ubiquitous services running on these devices (i.e. localizing users, routing, security algorithms) will commonly require an accurate location of each device. In order to obtain these locations, existing techniques require either a manual survey, active sound sources, or estimation using wireless radios. These techniques, however, need additional hardware capabilities and are intrusive to the user. Non-intrusive, automatic localization of ubiquitous computing devices in the home has the potential to greatly facilitate device deployments.

This paper presents the PANDAA system, a zero-configuration spatial localization system for networked devices based on …


Pandaa: Physical Arrangement Detection Of Networked Devices Through Ambient-Sound Awareness, Zheng Sun, Aveek Purohit, Kaifei Chen, Shijia Pan, Trevor Pering, Pei Zhang Sep 2011

Pandaa: Physical Arrangement Detection Of Networked Devices Through Ambient-Sound Awareness, Zheng Sun, Aveek Purohit, Kaifei Chen, Shijia Pan, Trevor Pering, Pei Zhang

Aveek Purohit

Future ubiquitous home environments can contain 10s or 100s of devices. Ubiquitous services running on these devices (i.e. localizing users, routing, security algorithms) will commonly require an accurate location of each device. In order to obtain these locations, existing techniques require either a manual survey, active sound sources, or estimation using wireless radios. These techniques, however, need additional hardware capabilities and are intrusive to the user. Non-intrusive, automatic localization of ubiquitous computing devices in the home has the potential to greatly facilitate device deployments.

This paper presents the PANDAA system, a zero-configuration spatial localization system for networked devices based on …


Pandaa: A Physical Arrangement Detection Technique For Networked Devices Through Ambient-Sound Awareness, Zheng Sun, Aveek Purohit, Philippe De Wagter, Irina Brinster, Chorom Hamm, Pei Zhang Aug 2011

Pandaa: A Physical Arrangement Detection Technique For Networked Devices Through Ambient-Sound Awareness, Zheng Sun, Aveek Purohit, Philippe De Wagter, Irina Brinster, Chorom Hamm, Pei Zhang

Zheng Sun

This demo presents PANDAA, a zero-configuration automatic spatial localization technique for networked devices based on ambient sound sensing. We will demonstrate that after initial placement of the devices, ambient sounds, such as human speech, music, footsteps, finger snaps, hand claps, or coughs and sneezes, can be used to autonomously resolve the spatial relative arrangement of devices, such as mobile phones, using trigonometric bounds and successive approximation.


Coughloc: Location-Aware Indoor Acoustic Sensing For Non-Intrusive Cough Detection, Zheng Sun, Aveek Purohit, Kathleen Yang, Neha Pattan, Dan Siewiorek, Asim Smailagic, Ian Lane, Pei Zhang Jun 2011

Coughloc: Location-Aware Indoor Acoustic Sensing For Non-Intrusive Cough Detection, Zheng Sun, Aveek Purohit, Kathleen Yang, Neha Pattan, Dan Siewiorek, Asim Smailagic, Ian Lane, Pei Zhang

Zheng Sun

Pervasive medical monitoring has become an ideal alter- native to nursing care for elderly people and patients in hospitals. Existing systems using single body-worn sensors are often intrusive and less reliable. By contrast, ubiqui- tous acoustic sensing techniques can support non-intrusive and robust medical monitoring. In this paper, we describe CoughLoc, a ubiquitous acoustic sensing system for con- tinuous cough detection using a wireless sensor network. We show how knowledge of sound source locations can be leveraged to improve the detection accuracy of sound events caused by mobile users. Experiments in indoor environ- ments show our system achieves over 90% …


Coughloc: Location-Aware Indoor Acoustic Sensing For Non-Intrusive Cough Detection, Zheng Sun, Aveek Purohit, Kathleen Yang, Neha Pattan, Dan Siewiorek, Asim Smailagic, Ian Lane, Pei Zhang Apr 2011

Coughloc: Location-Aware Indoor Acoustic Sensing For Non-Intrusive Cough Detection, Zheng Sun, Aveek Purohit, Kathleen Yang, Neha Pattan, Dan Siewiorek, Asim Smailagic, Ian Lane, Pei Zhang

Aveek Purohit

Pervasive medical monitoring has become an ideal alter- native to nursing care for elderly people and patients in hospitals. Existing systems using single body-worn sensors are often intrusive and less reliable. By contrast, ubiqui- tous acoustic sensing techniques can support non-intrusive and robust medical monitoring. In this paper, we describe CoughLoc, a ubiquitous acoustic sensing system for con- tinuous cough detection using a wireless sensor network. We show how knowledge of sound source locations can be leveraged to improve the detection accuracy of sound events caused by mobile users. Experiments in indoor environ- ments show our system achieves over 90% …


Development Of High Resolution Sea Floor Mapping Tools And Techniques, Gabrielle Inglis, Ian Vaughn, Clara Smart, Chris Roman Apr 2011

Development Of High Resolution Sea Floor Mapping Tools And Techniques, Gabrielle Inglis, Ian Vaughn, Clara Smart, Chris Roman

Christopher N. Roman

There is a persistent need for high resolution photographic and bathymetric maps of the sea floor for many research areas in marine geology, biology and archaeology. This poster will present recent work using high frequency multibeam sonars, stereo vision and structured light laser imaging techniques to create maps with centimeter resolution for these applications. This research involves the development of new image and sonar processing techniques that combat the typical difficulties of imperfect navigation information, limited sensor ranges and adverse environmental conditions associated with using marine robotic vehicles in the ocean. Data for this work has been collected with the …


Sensorfly: Controlled-Mobile Sensing Platform For Indoor Emergency Response Applications, Aveek Purohit, Zheng Sun, Frank Mokaya, Pei Zhang Apr 2011

Sensorfly: Controlled-Mobile Sensing Platform For Indoor Emergency Response Applications, Aveek Purohit, Zheng Sun, Frank Mokaya, Pei Zhang

Aveek Purohit

Indoor emergency response situations, such as urban fire, are characterized by dangerous constantly-changing operating environments with little access to situational information for first responders. In-situ information about the conditions, such as the extent and evolution of an indoor fire, can augment rescue efforts and reduce risk to emergency personnel. Static sensor networks that are pre-deployed or manually deployed have been proposed, but are less practical due to need for large infrastructure, lack of adaptivity and limited coverage. Controlled-mobility in sensor networks, i.e. the capability of nodes to move as per network needs can provide the desired autonomy to overcome these …


Sensorfly: Controlled-Mobile Sensing Platform For Indoor Emergency Response Applications, Aveek Purohit, Zheng Sun, Frank Mokaya, Pei Zhang Apr 2011

Sensorfly: Controlled-Mobile Sensing Platform For Indoor Emergency Response Applications, Aveek Purohit, Zheng Sun, Frank Mokaya, Pei Zhang

Zheng Sun

Indoor emergency response situations, such as urban fire, are characterized by dangerous constantly-changing operating environments with little access to situational information for first responders. In-situ information about the conditions, such as the extent and evolution of an indoor fire, can augment rescue efforts and reduce risk to emergency personnel. Static sensor networks that are pre-deployed or manually deployed have been proposed, but are less practical due to need for large infrastructure, lack of adaptivity and limited coverage. Controlled-mobility in sensor networks, i.e. the capability of nodes to move as per network needs can provide the desired autonomy to overcome these …


Cortina: Collaborative Context-Aware Indoor Positioning Employing Rss And Rtof Techniques, Zheng Sun, Richard Farley, Telis Kaleas, Judy Ellis, Kiran Chikkappa Mar 2011

Cortina: Collaborative Context-Aware Indoor Positioning Employing Rss And Rtof Techniques, Zheng Sun, Richard Farley, Telis Kaleas, Judy Ellis, Kiran Chikkappa

Zheng Sun

Cortina is an energy-efficient indoor localization system, which leverages a wireless sensor network to support navigation and tracking applications. To improve the localization performance, we develop a hybrid ranging system, which incor- porate both RSS and RToF-based techniques. To overcome effects from indoor multipath, we design and implement algorithms to take account various context information. We evaluated the system over a 2000m2 area instrumented with twenty-six fixed nodes. Evaluation results show the system achieved 2.5m accuracy in a pedestrian tracking application.


An Mpi-Cuda Implementation For Massively Parallel Incompressible Flow Computations On Multi-Gpu Clusters, Dana A. Jacobsen, Julien C. Thibault, Inanc Senocak Jan 2010

An Mpi-Cuda Implementation For Massively Parallel Incompressible Flow Computations On Multi-Gpu Clusters, Dana A. Jacobsen, Julien C. Thibault, Inanc Senocak

Inanc Senocak

Modern graphics processing units (GPUs) with many-core architectures have emerged as general-purpose parallel computing platforms that can accelerate simulation science applications tremendously. While multi-GPU workstations with several TeraFLOPS of peak computing power are available to accelerate computational problems, larger problems require even more resources. Conventional clusters of central processing units (CPU) are now being augmented with multiple GPUs in each compute-node to tackle large problems. The heterogeneous architecture of a multi-GPU cluster with a deep memory hierarchy creates unique challenges in developing scalable and efficient simulation codes. In this study, we pursue mixed MPI-CUDA implementations and investigate three strategies to …


A Heuristic Scheduling Scheme In Multiuser Ofdma Networks, Zheng Sun, Zhiqiang He, Ruochen Wang, Kai Niu Aug 2008

A Heuristic Scheduling Scheme In Multiuser Ofdma Networks, Zheng Sun, Zhiqiang He, Ruochen Wang, Kai Niu

Zheng Sun

Conventional heterogeneous-traffic scheduling schemes utilize zero-delay constraint for real-time services, which aims to minimize the average packet delay among real-time users. However, in light or moderate load networks this strategy is unnecessary and leads to low data throughput for non-real-time users. In this paper, we propose a heuristic scheduling scheme to solve this problem. The scheme measures and assigns scheduling priorities to both real-time and non-real-time users, and schedules the radio resources for the two user classes simultaneously. Simulation results show that the proposed scheme efficiently handles the heterogeneous-traffic scheduling with diverse QoS requirements and alleviates the unfairness between real-time …


Criteria On Utility Designing Of Convex Optimization In Fdma Networks, Zheng Sun, Wenjun Xu, Zhiqiang He, Kai Niu Apr 2008

Criteria On Utility Designing Of Convex Optimization In Fdma Networks, Zheng Sun, Wenjun Xu, Zhiqiang He, Kai Niu

Zheng Sun

In this paper, we investigate the network utility maximization problem in FDMA systems. We summarize with a suite of criteria on designing utility functions so as to achieve the global optimization convex. After proposing the general form of the utility functions, we present examples of commonly used utility function forms that are consistent with the criteria proposed in this paper, which include the well-known proportional fairness function and the sigmoidal-like functions. In the second part of this paper, we use numerical results to demonstrate a case study based on the criteria mentioned above, which deals with the subcarrier scheduling problem …


Byzantium Beneath The Black Sea, Bridget Buxton, Robert Ballard, Michael Brennan, Dwight Coleman, Katy Croff, Christopher Roman, Dan Davis, Dennis Piechota, Sergiy Voronov Dec 2007

Byzantium Beneath The Black Sea, Bridget Buxton, Robert Ballard, Michael Brennan, Dwight Coleman, Katy Croff, Christopher Roman, Dan Davis, Dennis Piechota, Sergiy Voronov

Christopher N. Roman

This poster reports on the August 2007 Black Sea Expedition of the Institute for Archaeological Oceanography at the University of Rhode Island (IAO) and the Institute for Exploration (IFE), in collaboration with the Department of the Underwater Heritage of Ukraine. This year’s work marks a new phase in a multi-year (2000–2012) archaeological and oceanographic survey of the Black Sea. 2007 fieldwork focuses on two Byzantine shipwrecks. The 10th century C.E. shipwreck Chersonesos A (discovered in 2006) lies at 140 m depth in the suboxic zone off the Crimean peninsula. The ship carried a cargo of one-handled jars of a widely …


Advances In High Resolution Imaging From Underwater Vehicles, Hanumant Singh, Christopher Roman, Oscar Pizarro, Ryan Eustice Dec 2004

Advances In High Resolution Imaging From Underwater Vehicles, Hanumant Singh, Christopher Roman, Oscar Pizarro, Ryan Eustice

Christopher N. Roman

Large area mapping at high resolution underwater continues to be constrained by the mismatch between available navigation as compared to sensor accuracy. In this paper we present advances that exploit consistency and redundancy within local sensor measurements to build high resolution optical and acoustic maps that are a consistent representation of the environment.

We present our work in the context of real world data acquired using Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles (ROVs) working in diverse applications including shallow water coral reef surveys with the Seabed AUV, a forensic survey of the RMS Titanic in the North Atlantic …