Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Mechanical Engineering

Muscle Synergies Improve Estimation Of Knee Contact Forces During Walking, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd Dec 2015

Muscle Synergies Improve Estimation Of Knee Contact Forces During Walking, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd

Allison Kinney

This study investigates whether use of subject-specific muscle synergies can improve optimization predictions of muscle excitation patterns and knee contact forces during walking. Muscle synergies describe how a small number of neural commands generated by the nervous system can be linearly combined to produce the broad range of muscle electromyographic (EMG) signals measured experimentally. By quantifying the interdependence of individual EMG signals, muscle synergies provide dimensionality reduction for the neural control redundancy problem. Our hypothesis was that use of subjectspecific muscle synergies to limit muscle excitation patterns would improve prediction of muscle EMG patterns at the hip, knee, and ankle …


Muscle Synergy Constraints Improve Prediction Of Knee Contact Force During Gait, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd Dec 2015

Muscle Synergy Constraints Improve Prediction Of Knee Contact Force During Gait, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd

Allison Kinney

Knowledge of patient-specific muscle and joint contact forces during activities of daily living could improve the treatment of movement-related disorders (e.g., osteoarthritis, stroke, cerebral palsy, Parkinson’s disease). Unfortunately, it is currently impossible to measure these quantities directly under common clinical conditions, and calculation of these quantities using computer models is limited by the redundant nature of human neural control (i.e., more muscles than theoretically necessary to actuate the available degrees of freedom in the skeleton). Walking is a particularly important task to understand, since loss of mobility is associated with increased morbidity and decreased quality of life. Though numerous musculoskeletal …


Evaluation Of Different Optimal Control Problem Formulations For Solving The Muscle Redundancy Problem, Friedl De Groote, Allison Kinney, Anil Rao, Benjamin Fregly Dec 2015

Evaluation Of Different Optimal Control Problem Formulations For Solving The Muscle Redundancy Problem, Friedl De Groote, Allison Kinney, Anil Rao, Benjamin Fregly

Allison Kinney

This study evaluates several possible optimal control problem formulations for solving the muscle redundancy problem with the goal of identifying the most efficient and robust formulation. One novel formulation involves the introduction of additional controls that equal the time derivative of the states, resulting in very simple dynamic equations. The nonlinear equations describing muscle dynamics are then imposed as algebraic constraints in their implicit form, simplifying their evaluation. By comparing different problem formulations for computing muscle controls that can reproduce inverse dynamic joint torques during gait, we demonstrate the efficiency and robustness of the proposed novel formulation.


Synergies Controls Improve Prediction Of Knee Contact Forces And Muscle Excitations During Gait, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd Dec 2015

Synergies Controls Improve Prediction Of Knee Contact Forces And Muscle Excitations During Gait, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd

Allison Kinney

This study investigates whether use of muscle excitation controls constructed from subjectspecific muscle synergy information can improve optimization prediction of knee contact forces and muscle excitations during walking. Muscle synergies quantify how a large number of experimental muscle electromyographic (EMG) signals can be reconstructed by linearly mixing a much smaller number of neural commands generated by the nervous system. Our hypothesis was that controlling all muscle excitations with a small set of experimentally calculated neural commands would improve prediction of knee contact forces and leg muscle excitations compared to using independently controlled muscle excitations.


Comparison Of Material Properties And Microstructure Of Specimens Built Using The 3d Systems Vanguard Hs And Vanguard Hiq+Hs Sls Systems, T.J. Silverman, Allison Kinney, W. Yong, J.H. Koo Dec 2015

Comparison Of Material Properties And Microstructure Of Specimens Built Using The 3d Systems Vanguard Hs And Vanguard Hiq+Hs Sls Systems, T.J. Silverman, Allison Kinney, W. Yong, J.H. Koo

Allison Kinney

The HiQ upgrade to the 3D Systems Vanguard selective laser sintering (SLS) machine incorporates a revised thermal calibration system and new control software. The paper compares the tensile modulus, tensile strength, elongation at break, flexural modulus, Izod impact resistance and microstructure of two batteries of standard specimens built from recycled Duraform PA (Nylon 12). The first set is built on a Vanguard HS system and the second on the same system with the HiQ upgrade installed. The upgrade reduces user intervention, decreases total build time and improves surface finish. However, using the default processing parameters, tensile, flexure and impact properties …


Optimum Grid By Direct Optimization Methods, Ajay Mahajan, Richard Hindman Apr 2015

Optimum Grid By Direct Optimization Methods, Ajay Mahajan, Richard Hindman

Dr. Ajay Mahajan

A solution-adaptive grid procedure based on optimization is developed and applied to the Linearized Viscous Burger's governing equation. The scheme redistributes the grid points as the solution adapts through each successive iteration step to minimize the truncation error terms in the modified equation and satisfy the governing equation. Fist order Roe scheme is used to discretize the governing equation. If the truncation error terms become negligible and the governing equation is satisfied by the scheme then the numerical solution approaches the exact solution.


Grid And Solution Adaptation Via Direct Optimization Methods, Ajay Mahajan Apr 2015

Grid And Solution Adaptation Via Direct Optimization Methods, Ajay Mahajan

Dr. Ajay Mahajan

At present all numerical schemes based on some form of differencing approach are plagued by some lack of accuracy when compared to the exact solution. This lack of accuracy can be attributed to the presence of truncation error in the numerical method. Traditionally the error can be reduced by increasing the number of mesh points in the discrete domain or by implementing a higher order numerical scheme. In recent times the approach has taken a more intelligent direction where adaptation or distribution of the mesh points is affected in such a way to reduce the error. However, grid adaptation with …


Review Of Seal Designs On The Apollo Spacecraft, Joshua Finkbeiner, Patrick Dunlap, Bruce Steinetz, Christopher Daniels Apr 2015

Review Of Seal Designs On The Apollo Spacecraft, Joshua Finkbeiner, Patrick Dunlap, Bruce Steinetz, Christopher Daniels

Dr. Christopher C Daniels

The Apollo spacecraft required a variety of seal designs to support human spaceflight to the moon and to return the crew safely to Earth. High-temperature seals were required for gaps in the thermal protection system to protect the underlying structures from the high heating environment of super orbital reentry. Reliable pressure seals were also required to prevent the loss of habitable atmosphere during missions to the moon...


Crack Nucleation In A Peridynamic Solid, S. Silling, O. Weckner, E. Askari, Florin Bobaru Jul 2013

Crack Nucleation In A Peridynamic Solid, S. Silling, O. Weckner, E. Askari, Florin Bobaru

Florin Bobaru Ph.D.

A condition for the emergence of a discontinuity in an elastic peridynamic body is proposed, resulting in a material stability condition for crack nucleation. The condition is derived by determining whether a small discontinuity in displacement, superposed on a possibly large deformation, grows over time. Stability is shown to be determined by the sign of the eigenvalues of a tensor field that depends only on the linearized material properties. This condition for nucleation of a discontinuity in displacement can be interpreted in terms of the dynamic stability of plane waves with very short wavelength. A numerical example illustrates that cracks …


Tools For Engine Diagnostics Under The Nasa Aviation Safety Program, George Baaklini, Andrew Gyekenyesi, K. Smith, Jerzy Sawicki, L. Brasche Jan 2013

Tools For Engine Diagnostics Under The Nasa Aviation Safety Program, George Baaklini, Andrew Gyekenyesi, K. Smith, Jerzy Sawicki, L. Brasche

Jerzy T. Sawicki

No abstract provided.


Stochastic Optimal Control In Nonlinear Systems, Celestin Nkundineza Nov 2012

Stochastic Optimal Control In Nonlinear Systems, Celestin Nkundineza

Celestin Nkundineza

Stochastic control is an important area of research in engineering systems that undergo disturbances. Controlling individual states in such systems is critical. The present investigation is concerned with the application of the stochastic optimal control strategy developed by To (2010) and its implementation as well as providing computed results of linear and nonlinear systems under stationary and nonstationary random excitations. In the strategy the feedback matrix is designed based on the achievement of the objectives for individual states in the system through the application of the Lyapunov equation for the system. Each diagonal element in the gain or associated gain …


Structural Damage Assessment Of Propulsions System Components By Impedance Based Health Monitoring, Richard Martin, Andrew Gyekneyesi, Jerzy Sawicki, George Baaklini Nov 2012

Structural Damage Assessment Of Propulsions System Components By Impedance Based Health Monitoring, Richard Martin, Andrew Gyekneyesi, Jerzy Sawicki, George Baaklini

Jerzy T. Sawicki

No abstract provided.


High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion, Albert Juhasz, Jerzy Sawicki Nov 2012

High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion, Albert Juhasz, Jerzy Sawicki

Jerzy T. Sawicki

For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a “partial energy conversion” system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the …