Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Mechanical Engineering

Biowall Development For The West Lafayette Public Library, Dhanurja De Silva, Yalin Lu, Siqi He, Ajay Dalal, Bill Hutzel Dec 2023

Biowall Development For The West Lafayette Public Library, Dhanurja De Silva, Yalin Lu, Siqi He, Ajay Dalal, Bill Hutzel

Purdue Journal of Service-Learning and International Engagement

A group of multidisciplinary Purdue students are working together to design, assemble, and install a Biowall in the Children’s section of the West Lafayette Public Library. A Biowall is a plant-based filter that improves Indoor Environmental Quality by cleaning indoor air and adding a natural aesthetic to the building space. Purdue has been developing Biowall technology since 2012, and this project involves redesigning it to fit into the available space at the library. The new Biowall design incorporates a watering mechanism that allows for children to get actively involved in maintaining the Biowall and learning about sustainability. This project also …


Creating Reel Designs: Reflecting On Arthrogryposis Multiplex Congenita In The Community, Iris Layadi Oct 2021

Creating Reel Designs: Reflecting On Arthrogryposis Multiplex Congenita In The Community, Iris Layadi

Purdue Journal of Service-Learning and International Engagement

Because of its extreme rarity, the genetic disease arthrogryposis multiplex congenita (AMC) and the needs of individuals with the diagnosis are often overlooked. AMC refers to the development of nonprogressive contractures in disparate areas of the body and is characterized by decreased flexibility in joints, muscle atrophy, and developmental delays. Colton Darst, a seven-year-old boy from Indianapolis, Indiana, was born with the disorder, and since then, he has undergone numerous surgical interventions and continues to receive orthopedic therapy to reduce his physical limitations. His parents, Michael and Amber Darst, have hopes for him to regain his limbic motion and are …


High-Throughput Nanoliter Dispensing Device For Biological Applications, Cole Reynolds, Euiwon Bae Dr., J Paul Robinson Dr. Aug 2018

High-Throughput Nanoliter Dispensing Device For Biological Applications, Cole Reynolds, Euiwon Bae Dr., J Paul Robinson Dr.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Pathogen identification is a field that can contribute largely to the prevention of the spreading of illness and disease. In the past, pathogen identification has been a long and arduous process due to the time-consuming processes and steps that requires technician’s time and effort. With new technologies emerging however, screening of bacteria colonies can be done in a quick and high-throughput way. The problem is that using the current methods, bacteria cannot be transferred to petri dishes fast enough to keep up with the new screening methods. The current study focuses on exploring different methods to create an ergonomic device …


Bacterial Motility And Its Role In Biofilm Formation, Clayton J. Culp, Arezoo M. Ardekani, Adib Ahmadzadegan Aug 2017

Bacterial Motility And Its Role In Biofilm Formation, Clayton J. Culp, Arezoo M. Ardekani, Adib Ahmadzadegan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bacterial biofilms are known to cause millions of dollars in damage in the medical industry per year via infection of central venous catheters, urinary catheters, and mechanical heart valves. Unfortunately, there are some characteristics of biofilm formation that are yet to be fully understood. Recently much work has been done to investigate the motility characteristics of bacteria with hopes of better understanding the phenomena of biofilm formation. Still, one of the least understood stages is bacterial attachment or adhesion, a process designed to anchor bacteria in an advantageous environment. Providing a better understanding of bacterial motility near solid interfaces will …


Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee Aug 2016

Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydrocephalus is a neurological disorder that typically requires a long-term implantation of a shunt system to manage its symptoms. These shunt systems are notorious for their extremely high failure rate. More than 40% of all implanted shunt systems fail within the first year of implantation. On average, 85% of all hydrocephalus patients with shunt systems undergo at least two shunt-revision surgeries within 10 years of implantation. A large portion of this high failure rate can be attributed to biofouling-related obstructions and infections. Previously, we developed flexible polyimide-based magnetic microactuators to remove obstructions formed on hydrocephalus shunts. To test the long-term …


The Relationship Between Intermittent Limit Cycles And Postural Instability Associated With Parkinson’S Disease, James R. Chagdes, Jessica E. Huber, Meredith Saletta, Meghan Darling-White, Arvind Raman, Shirley Rietdyk, Howard N. Zelaznik, Jeffrey M. Haddad Jan 2016

The Relationship Between Intermittent Limit Cycles And Postural Instability Associated With Parkinson’S Disease, James R. Chagdes, Jessica E. Huber, Meredith Saletta, Meghan Darling-White, Arvind Raman, Shirley Rietdyk, Howard N. Zelaznik, Jeffrey M. Haddad

School of Mechanical Engineering Faculty Publications

Background: Many disease-specifc factors such as muscular weakness, increased muscle stiffness, varying postural strategies, and changes in postural refexes have been shown to lead to postural instability and fall risk in people with Parkinson’s disease (PD). Recently, analytical techniques, inspired by the dynamical systems perspective on movement control and coordination, have been used to examine the mechanisms underlying the dynamics of postural declines and the emergence of postural instabilities in people with PD. Methods: A wavelet-based technique was used to identify limit cycle oscillations (LCOs) in the anterior–posterior (AP) postural sway of people with mild PD (n = 10) compared …


Structure-Functionality Relationship Of Collagen Scaffolds For Tissue Engineering, Seungman Park Oct 2014

Structure-Functionality Relationship Of Collagen Scaffolds For Tissue Engineering, Seungman Park

Open Access Dissertations

Tissue engineering is a promising technology that enables scientists to create artificial organs or replace damaged tissues using animal cells and other components. For successful tissue regeneration, many factors should be taken into account, however, three components are most crucial: cell, scaffold, and soluble factor(s). In order to check the functionality after regeneration of desired tissues, various approaches have been attempted, depending on the physical, biological, and chemical properties of the tissues. Recently, the importance of the extracellular matrix (ECM) microstructure is being considered to be important in this regard. The ECM is closely associated with various functional properties of …


Understanding Preferred Leg Stiffness And Layered Control Strategies For Locomotion, Zhuohua H. Shen Oct 2014

Understanding Preferred Leg Stiffness And Layered Control Strategies For Locomotion, Zhuohua H. Shen

Open Access Dissertations

Despite advancement in the field of robotics, current legged robots still cannot achieve the kind of locomotion stability animals and humans have. In order to develop legged robots with greater stability, we need to better understand general locomotion dynamics and control principles. Here we demonstrate that a mathematical modeling approach could greatly enable the discovery and understanding of general locomotion principles. ^ It is found that animal leg stiffness when scaled by its weight and leg length falls in a narrow region between 7 and 27. Rarely in biology does such a universal preference exist. It is not known completely …


Design, Development And Testing Of A Balance Board With Variable Torsional Stiffness And Time Delay, Denise Renee Cruise Jul 2014

Design, Development And Testing Of A Balance Board With Variable Torsional Stiffness And Time Delay, Denise Renee Cruise

Open Access Theses

The ability to balance and maintain upright posture can decline for a variety of reasons, such as aging and neuromuscular impairment. As the ability to balance declines, the risk of falling increases. Falls are a major cause of injury, and often lead to a dramatic decline in quality of life. Currently, to alleviate balance deficiencies, people participate in balance training, which most commonly refers to standing on an unstable balance board; the most common boards used are either passive wobble boards, or more advanced commercial systems such as the Biodex System SD ® or the Neurocom SMART Balance Master® . …


A Novel Three Degree-Of-Freedoms Oscillation System Of Insect Flapping Wings, Yi Qin Apr 2014

A Novel Three Degree-Of-Freedoms Oscillation System Of Insect Flapping Wings, Yi Qin

Open Access Theses

We propose an oscillation system to replicate the dynamic behavior of flapping wings, inspired by insect flight muscles. In particular, we study the flight of the fruit fly Drosophila virilis . We model the wing as a rigid body with three degree-of-freedom, described by three Euler angles: the stroke angle, the rotation angle and the deviation angle. Insect flight muscles are separated into two types: power muscles and control muscles. One actuator and one torsional spring at the stroke angle act as the power muscles. Two torsional springs at the rotation angle and the deviation angle mimic the control muscles. …


Synthesis And Characterization Of Nucleic Acid-Functionalized Nanomaterials, Brianna S. Carroll, Jong Hyun Choi Oct 2013

Synthesis And Characterization Of Nucleic Acid-Functionalized Nanomaterials, Brianna S. Carroll, Jong Hyun Choi

The Summer Undergraduate Research Fellowship (SURF) Symposium

Motor proteins such as kinesin move along microtubules in order to transport cellular cargos throughout the cell by obtaining energy from RNA hydrolysis which allows the cell to complete the tasks needed to stay alive. In this work, we developed synthetic molecular motors using DNA enzymes (DNAzyme) and fluorescent nanomaterials which mimic the functions and structures of motor proteins. A DNAzyme-capped CdS nanoparticle and a RNA-functionalized single-walled carbon nanotube (SWCNT) were used as a walker and a track in the motor platform, respectively. As a walking mechanism, the DNAzyme cleaved the RNA substrates in the presence of metal cations. The …


Hybrid Opto-Electrokinetic Technique For Micro/Nanomanipulation: Towards Application Of A Novel Non-Invasive Manipulation Technique In Microbiological Assay, Jae-Sung Kwon Oct 2013

Hybrid Opto-Electrokinetic Technique For Micro/Nanomanipulation: Towards Application Of A Novel Non-Invasive Manipulation Technique In Microbiological Assay, Jae-Sung Kwon

Open Access Dissertations

This dissertation explores various physical mechanisms of the Rapid Electrokinetic Patterning (REP) technique suggested for rapid and precise on-chip manipulation of colloids and fluids, and bio-compatibility of the technique for biological applications. REP is a hybrid opto-electrokinetic technique that is driven by the simultaneous application of an AC electric field and a heating source. It can not only effectively transport and manipulate a fluid but also concentrate and pattern particles suspended in the fluid through the combined effect of an electrohydrodynamic flow, electrostatic colloidal interactions and an electrothermal microfluidic flow. These capabilities make REP a promising tool which can provide …


Modeling Tools For Conformal Orthotic Devices, Steven David Riddle Jan 2013

Modeling Tools For Conformal Orthotic Devices, Steven David Riddle

Open Access Theses

The purpose of this thesis is to advance the design of conformal orthotic devices through the development of two modeling tools to address knowledge gaps in the field.

The field of human orthotics has been continually troubled by identifying successful methods of harnessing devices to the body. Past orthotics have utilized a rigid framework with minimal degrees of freedom (DOFs) driven by hard actuators attached to the body at select anchor points. Many devices design the structure and anchor points such that they reduce the degrees of freedom of a targeted joint, limiting the user's mobility and often causing the …


Modeling Of Legged Locomotion With A Suspended Load In The Sagittal Plane, Karna P. Potwar Jan 2013

Modeling Of Legged Locomotion With A Suspended Load In The Sagittal Plane, Karna P. Potwar

Open Access Theses

Walking or running while carrying loads has always been a tedious task, more so when the loads are heavy. Such a task of carrying loads not only requires extra effort but also leads to physical pain and in some cases injury. Prior studies on human locomotion with a suspended load have used models that are restricted in their DOFs and so are not able to take into account the fore aft movement in human beings. The objective of this thesis is to model the dynamics of sagittal plane center-of-mass locomotion with a suspended load and apply findings to carrying loads …