Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

Extending The Functional Subnetwork Approach To A Generalized Linear Integrate-And-Fire Neuron Model, Nicholas Szczecinski, Roger Quinn, Alexander J. Hunt Nov 2020

Extending The Functional Subnetwork Approach To A Generalized Linear Integrate-And-Fire Neuron Model, Nicholas Szczecinski, Roger Quinn, Alexander J. Hunt

Mechanical and Materials Engineering Faculty Publications and Presentations

Engineering neural networks to perform specific tasks often represents a monumental challenge in determining network architecture and parameter values. In this work, we extend our previously-developed method for tuning networks of non-spiking neurons, the “Functional subnetwork approach” (FSA), to the tuning of networks composed of spiking neurons. This extension enables the direct assembly and tuning of networks of spiking neurons and synapses based on the network’s intended function, without the use of global optimization ormachine learning. To extend the FSA, we show that the dynamics of a generalized linear integrate and fire (GLIF) neuronmodel have fundamental similarities to those of …


Characterization And Manipulation Of Carbon Precursor Species During Plasma Enhanced Chemical Vapor Deposition Of Graphene, Otto Zietz, Samuel Olson, Brendan Coyne, Yilian Liu, Jun Jiao Nov 2020

Characterization And Manipulation Of Carbon Precursor Species During Plasma Enhanced Chemical Vapor Deposition Of Graphene, Otto Zietz, Samuel Olson, Brendan Coyne, Yilian Liu, Jun Jiao

Mechanical and Materials Engineering Faculty Publications and Presentations

To develop a synthesis technique providing enhanced control of graphene film quality and uniformity, a systematic characterization and manipulation of hydrocarbon precursors generated during plasma enhanced chemical vapor deposition of graphene is presented. Remote ionization of acetylene is observed to generate a variety of neutral and ionized hydrocarbon precursors, while in situ manipulation of the size and reactivity of carbon species permitted to interact with the growth catalyst enables control of the resultant graphene morphology. Selective screening of high energy hydrocarbon ions coupled with a multistage bias growth regime results in the production of 90% few-to-monolayer graphene on 50 nm …


Utility-Scale Solar Pv Performance Enhancements Through System-Level Modifications, Andrew D. S. Glick, Naseem Ali, Juliaan Bossuyt, Marc Calaf, Raul Bayoan Cal Jan 2020

Utility-Scale Solar Pv Performance Enhancements Through System-Level Modifications, Andrew D. S. Glick, Naseem Ali, Juliaan Bossuyt, Marc Calaf, Raul Bayoan Cal

Mechanical and Materials Engineering Faculty Publications and Presentations

Performance of solar PV diminishes with the increase in temperature of the solar modules. Therefore, to further facilitate the reduction in cost of photovoltaic energy, new approaches to limit module temperature increase in natural ambient conditions should be explored. Thus far only approaches based at the individual panel level have been investigated, while the more complex, systems approach remains unexplored. Here, we perform the first wind tunnel scaled solar farm experiments to investigate the potential for temperature reduction through system-level flow enhancement. The percentage of solar irradiance converted into electric power depends upon module efficiency, typically less than 20%. The …


Detailed Energy Efficiency Strategies For Converting An Existing Office Building To Nzeb: A Case Study In The Pacific Northwest, Ali Alajmi, Abby Short, Janna Ferguson, Kalina K. Vander Poel, Corey T. Griffin Jan 2020

Detailed Energy Efficiency Strategies For Converting An Existing Office Building To Nzeb: A Case Study In The Pacific Northwest, Ali Alajmi, Abby Short, Janna Ferguson, Kalina K. Vander Poel, Corey T. Griffin

Mechanical and Materials Engineering Faculty Publications and Presentations

This paper is an attempt to identify a methodology for converting conventional energy consumption buildings to net-zero energy buildings (NZEB). The first step was rather different from the usual energy audit, which is to analyze a facility’s energy consumptions from both macro- and micro-scales. To implement such an approach, a governmental office building (Metro) in Portland, OR, was chosen as a case study. After a building model was validated against a real measurement, it was then used to evaluate different energy efficiency strategies (EESs) so as to reduce the energy consumption. The EESs showed a reduction in energy use intensity …


Data-Driven Modeling Of The Wake Behind A Wind Turbine Array, Naseem Ali, Raul Bayoan Cal Jan 2020

Data-Driven Modeling Of The Wake Behind A Wind Turbine Array, Naseem Ali, Raul Bayoan Cal

Mechanical and Materials Engineering Faculty Publications and Presentations

The wake flow in a wind turbine array boundary layer is described using the Koopman operator. Dynamics of the flow are decomposed into the linear and forcing terms, and the low-energy delay coordinates are revealed. The rare events show the non-Gaussian long tails that capture the switching and bursting phenomena. The near-wake region shows the incoherent phase space region, where the dynamics are strongly nonlinear. The far-wake region is marked with the small non-Gaussian forcing term, and the dynamics are largely governed by linear dynamics. The data-driven predictive model is built based on the Hankel-based dynamic mode decomposition and treats …


Utility-Scale Solar Pv Performance Enhancements Through System Level Modifications, Andrew D. S. Glick, Naseem Ali, Juliaan Bossuyt, Marc Calaf, Raúl Bayoán Cal Jan 2020

Utility-Scale Solar Pv Performance Enhancements Through System Level Modifications, Andrew D. S. Glick, Naseem Ali, Juliaan Bossuyt, Marc Calaf, Raúl Bayoán Cal

Mechanical and Materials Engineering Faculty Publications and Presentations

Performance of solar PV diminishes with the increase in temperature of the solar modules. Therefore, to further facilitate the reduction in cost of photovoltaic energy, new approaches to limit module temperature increase in natural ambient conditions should be explored. Thus far only approaches based at the individual panel level have been investigated, while the more complex, systems approach remains unexplored. Here, we perform the first wind tunnel scaled solar farm experiments to investigate the potential for temperature reduction through system-level flow enhancement. The percentage of solar irradiance converted into electric power depends upon module efficiency, typically less than 20%. The …


Openfoam Simulations Of Late Stage Container Draining In Microgravity, Joshua Thomas Mccraney, Mark M. Weislogel, Paul Steen Jan 2020

Openfoam Simulations Of Late Stage Container Draining In Microgravity, Joshua Thomas Mccraney, Mark M. Weislogel, Paul Steen

Mechanical and Materials Engineering Faculty Publications and Presentations

In the reduced acceleration environment aboard orbiting spacecraft, capillary forces are often exploited to access and control the location and stability of fuels, propellants, coolants, and biological liquids in containers (tanks) for life support. To access the ‘far reaches’ of such tanks, the passive capillary pumping mechanism of interior corner networks can be employed to achieve high levels of draining. With knowledge of maximal corner drain rates, gas ingestion can be avoided and accurate drain transients predicted. In this paper, we benchmark a numerical method for the symmetric draining of capillary liquids in simple interior corners. The free surface is …


A Dynamic Neural Network Designed Using Analytical Methods Produces Dynamic Control Properties Similar To An Analogous Classical Controller, Wade William Hilts, Nicholas Szczecinski, Roger Quinn, Alexander Hunt Jan 2020

A Dynamic Neural Network Designed Using Analytical Methods Produces Dynamic Control Properties Similar To An Analogous Classical Controller, Wade William Hilts, Nicholas Szczecinski, Roger Quinn, Alexander Hunt

Mechanical and Materials Engineering Faculty Publications and Presentations

Human balance is achieved using many concurrent control loops that combine to react to changes in environment, posture, center of mass and other factors affecting stability. Though numerous engineering models of human balance control have been tested, no methods for porting these models to a neural architecture have been established. It is our hypothesis that the analytical methods we have developed, combined with classical control techniques will provide a reasonable starting point for developing dynamic neural controllers that can reproduce classical control capabilities. In previous work, we tested this hypothesis and demonstrated that a biologically-constrained neural controller that replicates human …


Modelling Lagrangian Velocity And Acceleration In Turbulent Flows As Infinitely Differentiable Stochastic Process, Bianca Fontanin Viggiano, Jan Friedrich, Romain Volk, Mickael Bourgoin, Raúl Bayoán Cal, Laurent Chevillard Jan 2020

Modelling Lagrangian Velocity And Acceleration In Turbulent Flows As Infinitely Differentiable Stochastic Process, Bianca Fontanin Viggiano, Jan Friedrich, Romain Volk, Mickael Bourgoin, Raúl Bayoán Cal, Laurent Chevillard

Mechanical and Materials Engineering Faculty Publications and Presentations

We develop a stochastic model for Lagrangian velocity as it is observed in experimental and numerical fully developed turbulent flows. We define it as the unique statistically stationary solution of a causal dynamics, given by a stochastic differential equation. In comparison to previously proposed stochastic models, the obtained process is infinitely differentiable at a given finite Reynolds number, and its second-order statistical properties converge to those of an Ornstein-Uhlenbeck process in the infinite Reynolds number limit. In this limit, it exhibits furthermore intermittent scaling properties, as they can be quantified using higher-order statistics. To achieve this, we begin with generalizing …