Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Simplified, Alternative Formulation Of Numerical Simulation Of Proton Exchange Membrane Fuel Cell, Russell L. Edwards Apr 2018

Simplified, Alternative Formulation Of Numerical Simulation Of Proton Exchange Membrane Fuel Cell, Russell L. Edwards

Mechanical & Aerospace Engineering Theses & Dissertations

Three-Dimensional proton exchange fuel cell (PEMFC) operation in steady-state is simulated with computational fluid dynamics / multiphysics software that is based upon the finite-element method. PEMFC operation involves the simultaneous simulation of multiple, interconnected physics involving fluid flows, heat transport, electrochemical reactions, and both protonic and electronic conduction. Modeling efforts have varied by how they treat the physics occurring within and adjacent to the membrane-electrode assembly (MEA). Several approaches treat the MEA as part of the computational domain, solving multiple, and coupled conservation equations via the CFD approach within the 3 regions of the MEA. The thickness dimensions of the …


Erosion Degradation Characteristics Of A Linear Electro-Hydrostatic Actuator Under A High-Frequency Turbulent Flow Field, Yuan Li, Shaoping Wang, Mileta M. Tomovic, Chao Zhang Jan 2018

Erosion Degradation Characteristics Of A Linear Electro-Hydrostatic Actuator Under A High-Frequency Turbulent Flow Field, Yuan Li, Shaoping Wang, Mileta M. Tomovic, Chao Zhang

Engineering Technology Faculty Publications

The paper proposes a performance degradation analysis model based on dynamic erosion wear for a novel Linear Electro-Hydrostatic Actuator (LEHA). Rather than the traditional statistical methods based on degradation data, the method proposed in this paper firstly analyzes the dominant progressive failure mode of the LEHA based on the working principle and working conditions of the LEHA. The Computational Fluid Dynamics (CFD) method, combining the turbulent theory and the micro erosion principle, is used to establish an erosion model of the rectification mechanism. The erosion rates for different port openings, under a time-varying flow field, are obtained. The piecewise linearization …