Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

The Study Of Wave-Blocking And Current Effects On Nonlinear Interactions Of Shallow-Water Waves Using Advanced Boussinesq Models, Qin Chen Jul 1997

The Study Of Wave-Blocking And Current Effects On Nonlinear Interactions Of Shallow-Water Waves Using Advanced Boussinesq Models, Qin Chen

Civil & Environmental Engineering Theses & Dissertations

The first part of this work focuses on the derivation of enhanced Boussinesq-type equations for the combined motion of waves and currents in shallow water areas.

The strategy proposed in this work is to couple two known methods which are the sponge layer concept suitable for short waves and Sommerfeld radiation condition for currents. This coupling method provides satisfactory non-reflective boundaries for the simulation of fully coupled wave/current motion as demonstrated by the numerical experiments. We verify the model against the well known solutions based on the existing theories and good agreement has been observed. The numerical results confirm the …


High-Order Finite-Difference Schemes And Their Application To Computational Acoustics, Joe Leo Manthey Jul 1997

High-Order Finite-Difference Schemes And Their Application To Computational Acoustics, Joe Leo Manthey

Mathematics & Statistics Theses & Dissertations

The primary focus of this study is upon the numerical stability of high-order finite-difference schemes and their application to duct acoustics. Since acoustic waves are known to be non-dissipative and non-dispersive, high-order schemes are favored for their low dissipation and low dispersion relative to the low-order schemes. The primary obstacle to the the development of explicit high-order finite-difference schemes is the construction of boundary closures which simultaneously maintain the formal order of accuracy and the numerical stability of the overall scheme. In this thesis a hybrid seven-point, fourth-order stencil for computing spatial derivatives is presented and the time stability is …


Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso Apr 1997

Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso

Mechanical & Aerospace Engineering Theses & Dissertations

A hybrid automatic differentiation/incremental iterative method was implemented in the general purpose advanced computational fluid dynamics code (CFL3D Version 4.1) to yield a new code (CFL3D.ADII) that is capable of computing consistently discrete first order sensitivity derivatives for complex geometries. With the exception of unsteady problems, the new code retains all the useful features and capabilities of the original CFL3D flow analysis code. The superiority of the new code over a carefully applied method of finite-differences is demonstrated.

A coarse grain, scalable, distributed-memory, parallel version of CFL3D.ADII was developed based on "derivative stripmining". In this data-parallel approach, an identical copy …