Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Development Of The Compact Jet Engine Simulator From Concept To Useful Test Rig, Henry H. Haskin Jul 2016

Development Of The Compact Jet Engine Simulator From Concept To Useful Test Rig, Henry H. Haskin

Mechanical & Aerospace Engineering Theses & Dissertations

Two Compact Jet Engine Simulator (CJES) units were designed for integrated wind tunnel acoustic experiments involving a Hybrid Wing Body (HWB) vehicle. To meet the 5.8% scale of the HWB model, Ultra Compact Combustor technology from the Air Force Research Laboratory was used. The CJES units were built and integrated with a control system in the NASA Langley Low Speed Aero acoustic Wind Tunnel. The combustor liners, plug—vane and flow conditioner components were built in-house at Langley Research Center. The operation of the CJES units was mapped and fixes found for combustor instability tones and rig flow noise. The original …


Carbon Deposition During Oxygen Production Using High Temperature Electrolysis And Mitigation Methods, Timothy Adam Bernadowski Jul 2016

Carbon Deposition During Oxygen Production Using High Temperature Electrolysis And Mitigation Methods, Timothy Adam Bernadowski

Mechanical & Aerospace Engineering Theses & Dissertations

Carbon dioxide in the Martian atmosphere can be converted to oxygen during high temperature electrolysis for use in life-support and fuel systems on manned missions to the red planet. During electrolysis of carbon dioxide to produce oxygen, carbon can deposit on the electrolysis cell resulting in lower efficiency and possibly cell damage. This would be detrimental, especially when the oxygen product is used as the key element of a space life support system. In this thesis, a theoretical model was developed to predict hazardous carbon deposition conditions under various operating conditions within the Martian atmosphere. The model can be used …


A Comparison Of Microstructure And Uniaxial Compressive Response Of Ice-Templated Porous Alumina Scaffolds Fabricated From Two Different Particle Sizes, Nikhil D. Dhavale Jul 2016

A Comparison Of Microstructure And Uniaxial Compressive Response Of Ice-Templated Porous Alumina Scaffolds Fabricated From Two Different Particle Sizes, Nikhil D. Dhavale

Mechanical & Aerospace Engineering Theses & Dissertations

Development of bio-inspired highly porous (>50 vol.%) cellular ceramics is crucial to meet the demand of high-performance lightweight and damage-tolerant materials for a number of cutting-edge applications including impact energy absorption, biomedical implants, and energy storage. A key design feature that is observed in many natural materials (e.g., nacre, bamboo, wood, etc.) is the presence of hierarchical microstructure that results in an excellent synergy of various material properties, which are otherwise considered as mutually exclusive in current paradigm of materials design. To this end, development of multilayered, interconnected and anisotropic cellular ceramics could benefit the aforementioned applications. However, mimicking …


A Hybrid Position Feedback Controller For Bistable Structures, Mehmet R. Simsek Apr 2016

A Hybrid Position Feedback Controller For Bistable Structures, Mehmet R. Simsek

Mechanical & Aerospace Engineering Theses & Dissertations

Bistability is the property of structures showing the ability to attain two statically stable states. Due to dynamic and static advantages such as no energy demand at stable positions and providing higher deflections compared to a monostable structure, bistability may be appealing in control surface design for aircraft structures and load alleviation for wind turbine blades. The dynamics of bistable structures is nonlinear because of the snap-through occurring during the cross-well oscillation between two stable states. A new control strategy called hybrid position feedback control is developed based on the conventional positive position control to exploit linear dynamics of bistable …


Experimental Investigation Of Turbulent Structures And Non-Equilibrium Effects In Axial Wake Vortices Via Particle Image Velocimetry, Jeffry William Ely Apr 2016

Experimental Investigation Of Turbulent Structures And Non-Equilibrium Effects In Axial Wake Vortices Via Particle Image Velocimetry, Jeffry William Ely

Mechanical & Aerospace Engineering Theses & Dissertations

Vortices are a common phenomenon in fluid flows that arise as kinetic energy dissipates into heat via viscous interaction. They arise naturally at large scales in the form of dust devils, tornadoes, and as a counter-rotating vortex pair in the wake of aircraft. It is important to understand the conditions leading to their formation, their duration, and their dissipation in order to forecast or prevent undesirable effects. Among these deleterious effects is a decrease in safety of aircraft operations in the wake of other aircraft, an extremely common situation at airports around the world. A large number of mathematical models …


Backward Dijkstra Algorithms For Finding The Departure Time Based On The Specified Arrival Time For Real-Life Time-Dependent Networks, Gelareh Bakhtyar, Vi Nguyen, Mecit Cetin, Duc Nguyen Jan 2016

Backward Dijkstra Algorithms For Finding The Departure Time Based On The Specified Arrival Time For Real-Life Time-Dependent Networks, Gelareh Bakhtyar, Vi Nguyen, Mecit Cetin, Duc Nguyen

Civil & Environmental Engineering Faculty Publications

A practical transportation problem for finding the “departure” time at “all source nodes” in order to arrive at “some destination nodes” at specified time for both FIFO (i.e., First In First Out) and Non-FIFO “Dynamic ” Networks is considered in this study. Although shortest path (SP) for dynamic networks have been studied/documented by various researchers, contributions from this present work consists of a sparse matrix storage scheme for efficiently storing large scale sparse network’s connectivity, a concept of Time Delay Factor (TDF) combining with a “general piece- wise linear function” to describe the link cost as a function of time …